The Citing articles tool gives a list of articles citing the current article.
The citing articles come from EDP Sciences database, as well as other publishers participating in CrossRef Cited-by Linking Program. You can set up your personal account to receive an email alert each time this article is cited by a new article (see the menu on the right-hand side of the abstract page).
Cited article:
Jean Meinguet
RAIRO. Anal. numér., 11 4 (1977) 355-368
Published online: 2017-02-01
This article has been cited by the following article(s):
Finite Element Methods (Part 1)
P.G. Ciarlet
Handbook of Numerical Analysis, Finite Element Methods (Part 1) 2 17 (1991)
DOI: 10.1016/S1570-8659(05)80039-0
See this article
Approximation Theory and Spline Functions
Jean Meinguet
Approximation Theory and Spline Functions 97 (1984)
DOI: 10.1007/978-94-009-6466-2_5
See this article
Finite Element Solution of Boundary Value Problems
O. AXELSSON and V.A. BARKER
Finite Element Solution of Boundary Value Problems 163 (1984)
DOI: 10.1016/B978-0-12-068780-0.50011-X
See this article
Multivariate Approximation Theory II
Jean Meinguet
Multivariate Approximation Theory II 255 (1982)
DOI: 10.1007/978-3-0348-7189-1_21
See this article
Polynomial approximation of functions in Sobolev spaces
Todd Dupont and Ridgway Scott
Mathematics of Computation 34 (150) 441 (1980)
DOI: 10.1090/S0025-5718-1980-0559195-7
See this article
Une repr�sentation int�grale de l'erreur d'interpolation
Patrick Chenin
Numerische Mathematik 32 (4) 461 (1979)
DOI: 10.1007/BF01401048
See this article
Multivariate Approximation Theory
Patrick Chenin
ISNM International Series of Numerical Mathematics / Internationale Schriftenreihe zur Numerischen Mathematik / Série Internationale D’Analyse Numérique, Multivariate Approximation Theory 51 57 (1979)
DOI: 10.1007/978-3-0348-6289-9_4
See this article
Multivariate Approximation Theory
Gerhard Heindl
ISNM International Series of Numerical Mathematics / Internationale Schriftenreihe zur Numerischen Mathematik / Série Internationale D’Analyse Numérique, Multivariate Approximation Theory 51 146 (1979)
DOI: 10.1007/978-3-0348-6289-9_11
See this article