Articles citing this article

The Citing articles tool gives a list of articles citing the current article.
The citing articles come from EDP Sciences database, as well as other publishers participating in CrossRef Cited-by Linking Program. You can set up your personal account to receive an email alert each time this article is cited by a new article (see the menu on the right-hand side of the abstract page).

Cited article:

On the analysis of a mechanically consistent model of fluid-structure-contact interaction

Marguerite Champion, Miguel A. Fernández, Céline Grandmont, Fabien Vergnet and Marina Vidrascu
Mathematics in Engineering 6 (3) 425 (2024)
https://doi.org/10.3934/mine.2024018

On pressure robustness and independent determination of displacement and pressure in incompressible linear elasticity

Adam Zdunek, Michael Neunteufel and Waldemar Rachowicz
Computer Methods in Applied Mechanics and Engineering 403 115714 (2023)
https://doi.org/10.1016/j.cma.2022.115714

To ℘ or not to p – the mixed displacement–pressure p, versus the higher order ℘ displacement finite element formulation, for nearly incompressible linear elasticity

Adam Zdunek and Waldemar Rachowicz
Computers & Mathematics with Applications 148 313 (2023)
https://doi.org/10.1016/j.camwa.2023.08.025

A linearized consistent mixed displacement-pressure formulation for hyperelasticity

Chennakesava Kadapa and Mokarram Hossain
Mechanics of Advanced Materials and Structures 29 (2) 267 (2022)
https://doi.org/10.1080/15376494.2020.1762952

Error estimates for mixed and hybrid FEM for elliptic optimal control problems with penalizations

Gilbert Peralta
Advances in Computational Mathematics 48 (6) (2022)
https://doi.org/10.1007/s10444-022-09980-0

Local null controllability of the penalized Boussinesq system with a reduced number of controls

Jon Asier Bárcena-Petisco and Kévin Le Balc'h
Mathematical Control and Related Fields 12 (3) 641 (2022)
https://doi.org/10.3934/mcrf.2021038

A Variable-Separation Method for Nonlinear Partial Differential Equations With Random Inputs

Qiuqi Li and Pingwen Zhang
SIAM Journal on Scientific Computing 42 (2) A723 (2020)
https://doi.org/10.1137/19M1262486

The penalty algorithm method for the resolution of Darcy problem

Mohamed Abdelwahed, Nejmeddine Chorfi and Henda Ouertani
Mathematical Methods in the Applied Sciences (2020)
https://doi.org/10.1002/mma.6571

Analyzing the role of the Inf-Sup condition for parameter identification in saddle point problems with application in elasticity imaging

Baasansuren Jadamba, Akhtar A. Khan, Michael Richards, Miguel Sama and Christiane Tammer
Optimization 69 (12) 2577 (2020)
https://doi.org/10.1080/02331934.2020.1789128

A finite-element toolbox for the simulation of solid–liquid phase-change systems with natural convection

Aina Rakotondrandisa, Georges Sadaka and Ionut Danaila
Computer Physics Communications 253 107188 (2020)
https://doi.org/10.1016/j.cpc.2020.107188

Penalty algorithm adapted for the spectral element discretization of the Darcy equations

Mohamed Abdelwahed and Nejmeddine Chorfi
Boundary Value Problems 2019 (1) (2019)
https://doi.org/10.1186/s13661-019-01305-3

A weak penalty formulation remedying traction oscillations in interface elements

Erik Svenning
Computer Methods in Applied Mechanics and Engineering 310 460 (2016)
https://doi.org/10.1016/j.cma.2016.07.031

A novel methodology for personalized simulations of ventricular hemodynamics from noninvasive imaging data

A. de Vecchi, A. Gomez, K. Pushparajah, et al.
Computerized Medical Imaging and Graphics 51 20 (2016)
https://doi.org/10.1016/j.compmedimag.2016.03.004

Continuous/Discontinuous Galerkin methods stabilized through transfer functions applied to the incompressible elasticity and to the Stokes problem

E.G. Dutra do Carmo, M.T.C. Araújo Fernandes and Webe João Mansur
Computer Methods in Applied Mechanics and Engineering 283 806 (2015)
https://doi.org/10.1016/j.cma.2014.10.009

A locking-free immersed finite element method for planar elasticity interface problems

Tao Lin, Dongwoo Sheen and Xu Zhang
Journal of Computational Physics 247 228 (2013)
https://doi.org/10.1016/j.jcp.2013.03.053

Mixed Finite Element Methods and Applications

Daniele Boffi, Franco Brezzi and Michel Fortin
Springer Series in Computational Mathematics, Mixed Finite Element Methods and Applications 44 459 (2013)
https://doi.org/10.1007/978-3-642-36519-5_8

A penalty algorithm for the spectral element discretization of the Stokes problem

Christine Bernardi, Adel Blouza, Nejmeddine Chorfi and Nizar Kharrat
ESAIM: Mathematical Modelling and Numerical Analysis 45 (2) 201 (2011)
https://doi.org/10.1051/m2an/2010038

Mixed finite element methods for incompressible flow: Stationary Stokes equations

Zhiqiang Cai, Charles Tong, Panayot S. Vassilevski and Chunbo Wang
Numerical Methods for Partial Differential Equations 26 (4) 957 (2010)
https://doi.org/10.1002/num.20467

A fast and robust fictitious domain method for modelling viscous flows in complex mixers: The example of propellant make‐down

Benjamin Coesnon, Mourad Heniche, Christophe Devals, François Bertrand and Philippe A. Tanguy
International Journal for Numerical Methods in Fluids 58 (4) 427 (2008)
https://doi.org/10.1002/fld.1751

An Augmented Lagrangian Approach to Linearized Problems in Hydrodynamic Stability

Maxim A. Olshanskii and Michele Benzi
SIAM Journal on Scientific Computing 30 (3) 1459 (2008)
https://doi.org/10.1137/070691851

Eigenvalue analysis of the SIMPLE preconditioning for incompressible flow

C. Li and C. Vuik
Numerical Linear Algebra with Applications 11 (5-6) 511 (2004)
https://doi.org/10.1002/nla.358

A POSTERIORI ANALYSIS OF A PENALTY METHOD AND APPLICATION TO THE STOKES PROBLEM

C. BERNARDI, V. GIRAULT and F. HECHT
Mathematical Models and Methods in Applied Sciences 13 (11) 1599 (2003)
https://doi.org/10.1142/S0218202503003057

Finite element methods on non-conforming grids by penalizing the matching constraint

Eric Boillat
ESAIM: Mathematical Modelling and Numerical Analysis 37 (2) 357 (2003)
https://doi.org/10.1051/m2an:2003031

Choix du paramètre de pénalisation pour la discrétisation par éléments finis des équations de Navier–Stokes

Christine Bernardi, Vivette Girault and Frédéric Hecht
Comptes Rendus. Mathématique 336 (8) 671 (2003)
https://doi.org/10.1016/S1631-073X(03)00101-8

PENALTY APPROXIMATIONS TO THE STATIONARY POWER-LAW NAVIER–STOKES PROBLEM

Dongming Wei
Numerical Functional Analysis and Optimization 22 (5-6) 749 (2001)
https://doi.org/10.1081/NFA-100105316

On the perturbed Lagrangian formulation for nearly incompressible and incompressible hyperelasticity

J.S. Chen, W. Han, C.T. Wu and W. Duan
Computer Methods in Applied Mechanics and Engineering 142 (3-4) 335 (1997)
https://doi.org/10.1016/S0045-7825(96)01139-5

A Pressure Projection Method for Nearly Incompressible Rubber Hyperelasticity, Part I: Theory

Jiun-Shyan Chen and Chunhui Pan
Journal of Applied Mechanics 63 (4) 862 (1996)
https://doi.org/10.1115/1.2787240

On Error Estimates of the Penalty Method for Unsteady Navier–Stokes Equations

Jie Shen
SIAM Journal on Numerical Analysis 32 (2) 386 (1995)
https://doi.org/10.1137/0732016

Finite element analysis of anisotropic non‐linear incompressible elastic solids by a mixed model

Ramakrishnan Srinivasan and Renato Perucchio
International Journal for Numerical Methods in Engineering 37 (18) 3075 (1994)
https://doi.org/10.1002/nme.1620371805

Necessary conditions to avoid numerical locking in singular perturbations. Application to arch equations

Denise Chenais and Martin Zerner
Computer Methods in Applied Mechanics and Engineering 115 (1-2) 145 (1994)
https://doi.org/10.1016/0045-7825(94)90192-9

Une analyse de la méthode des domaines fictifs pour le problème de Helmholtz extérieur

C. Atamian and P. Joly
ESAIM: Mathematical Modelling and Numerical Analysis 27 (3) 251 (1993)
https://doi.org/10.1051/m2an/1993270302511

Multilevel Iteration for Mixed Finite Element Systems with Penalty

Zhiqiang Cai, Charles I. Goldstein and Joseph E. Pasciak
SIAM Journal on Scientific Computing 14 (5) 1072 (1993)
https://doi.org/10.1137/0914065

Stability analysis of discrete generalized Stokes problems

M. Fortin and R. Pierre
Numerical Methods for Partial Differential Equations 8 (4) 303 (1992)
https://doi.org/10.1002/num.1690080402

Discontinuous and Mixed Finite Elements for Two-Phase Incompressible Flow

Guy Chavent, Gary Cohen, Jérôme Jaffré, et al.
SPE Reservoir Engineering 5 (04) 567 (1990)
https://doi.org/10.2118/16018-PA

The calculation of incompressible separated turbulent boundary layers

A. Kogan and S. Migemi
International Journal for Numerical Methods in Fluids 11 (1) 39 (1990)
https://doi.org/10.1002/fld.1650110104

Some numerical aspects of mixed finite elements for bending plates

Philippe Destuynder and Thierry Nevers
Computer Methods in Applied Mechanics and Engineering 78 (1) 73 (1990)
https://doi.org/10.1016/0045-7825(90)90153-D

Attractors for the Penalized Navier–Stokes Equations

B. Brefort, J. M. Ghidaglia and R. Temam
SIAM Journal on Mathematical Analysis 19 (1) 1 (1988)
https://doi.org/10.1137/0519001

Approximation num�rique du cisaillement transverse dans les plaques minces en flexion

P. Destuynder and J. C. Nedelec
Numerische Mathematik 48 (3) 281 (1986)
https://doi.org/10.1007/BF01389476

An iteration method for the mixed formulation of parameter dependent problems related to the Stokes equations

F. Kikuchi and M. P. Navarro
Computational Mechanics 1 (2) 141 (1986)
https://doi.org/10.1007/BF00277698

Patterns and Waves - Qualitative Analysis of Nonlinear Differential Equations

Fumio Kikuchi
Studies in Mathematics and Its Applications, Patterns and Waves - Qualitative Analysis of Nonlinear Differential Equations 18 445 (1986)
https://doi.org/10.1016/S0168-2024(08)70141-3

Estimates of the rate of convergence of difference schemes for variational elliptic second-order inequalities in an arbitrary domain

S.A. Voitsekhovskii, I.N. Gavrilyuk and V.S. Sazhenyuk
USSR Computational Mathematics and Mathematical Physics 26 (3) 113 (1986)
https://doi.org/10.1016/0041-5553(86)90124-2

Mathematical Models and Finite Elements for Reservoir Simulation - Single Phase, Multiphase and Multicomponent Flows through Porous Media

Studies in Mathematics and Its Applications, Mathematical Models and Finite Elements for Reservoir Simulation - Single Phase, Multiphase and Multicomponent Flows through Porous Media 17 365 (1986)
https://doi.org/10.1016/S0168-2024(08)70084-5

On the construction of optimal mixed finite element methods for the linear elasticity problem

Rolf Stenberg
Numerische Mathematik 48 (4) 447 (1986)
https://doi.org/10.1007/BF01389651

Consistent vs. reduced integration penalty methods for incompressible media using several old and new elements

M. S. Engelman, R. L. Sani, P. M. Gresho and M. Bercovier
International Journal for Numerical Methods in Fluids 2 (1) 25 (1982)
https://doi.org/10.1002/fld.1650020103

The cause and cure (!) of the spurious pressures generated by certain fem solutions of the incompressible Navier‐Stokes equations: Part 2

R. L. Sani, P. M. Gresho, R. L. Lee, D. F. Grifftths and M. Engelman
International Journal for Numerical Methods in Fluids 1 (2) 171 (1981)
https://doi.org/10.1002/fld.1650010206

Finite Element Approximation of the Navier-Stokes Equations

Lecture Notes in Mathematics, Finite Element Approximation of the Navier-Stokes Equations 749 1 (1981)
https://doi.org/10.1007/BFb0063448

A finite element method for the analysis of rubber parts, experimental and analytical assessment

E. Jankovich, F. Leblanc, M. Durand and M. Bercovier
Computers & Structures 14 (5-6) 385 (1981)
https://doi.org/10.1016/0045-7949(81)90058-4

Remarks on relations between penalty and mixed finite element methods for a class of variational inequalities

Noboru Kikuchi and Young Joon Song
International Journal for Numerical Methods in Engineering 15 (10) 1557 (1980)
https://doi.org/10.1002/nme.1620151010

Approximation of bingham's variational inequalities by a penalty function for the incompressibility constraint

M. Bercovier
Numerical Functional Analysis and Optimization 2 (5) 361 (1980)
https://doi.org/10.1080/01630568008816064

A conforming finite element method for two‐dimensional incompressible elasticity

B. Mercier
International Journal for Numerical Methods in Engineering 14 (6) 942 (1979)
https://doi.org/10.1002/nme.1620140614