Articles citing this article

The Citing articles tool gives a list of articles citing the current article.
The citing articles come from EDP Sciences database, as well as other publishers participating in CrossRef Cited-by Linking Program. You can set up your personal account to receive an email alert each time this article is cited by a new article (see the menu on the right-hand side of the abstract page).

Cited article:

Unified a priori analysis of four second-order FEM for fourth-order quadratic semilinear problems

Carsten Carstensen, Neela Nataraj, Gopikrishnan C. Remesan and Devika Shylaja
Numerische Mathematik 154 (3-4) 323 (2023)
https://doi.org/10.1007/s00211-023-01356-w

An adaptive C0 Interior Penalty Discontinuous Galerkin method and an equilibrated a posteriori error estimator for the von Kármán equations

R.H.W. Hoppe
Applied Numerical Mathematics 190 27 (2023)
https://doi.org/10.1016/j.apnum.2023.01.004

A space-time adaptive discontinuous Galerkin method for the numerical solution of the dynamic quasi-static von Kármán equations

R.H.W. Hoppe
Computers & Mathematics with Applications 132 32 (2023)
https://doi.org/10.1016/j.camwa.2022.12.005

A posteriori error analysis for a distributed optimal control problem governed by the von Kármán equations

Sudipto Chowdhury, Asha K. Dond, Neela Nataraj and Devika Shylaja
ESAIM: Mathematical Modelling and Numerical Analysis 56 (5) 1655 (2022)
https://doi.org/10.1051/m2an/2022040

A virtual element method for the von Kármán equations

Carlo Lovadina, David Mora and Iván Velásquez
ESAIM: Mathematical Modelling and Numerical Analysis 55 (2) 533 (2021)
https://doi.org/10.1051/m2an/2020085

Hessian discretisation method for fourth-order semi-linear elliptic equations: applications to the von Kármán and Navier–Stokes models

Jérome Droniou, Neela Nataraj and Devika Shylaja
Advances in Computational Mathematics 47 (2) (2021)
https://doi.org/10.1007/s10444-020-09837-4

Nonconforming finite element discretization for semilinear problems with trilinear nonlinearity

Carsten Carstensen, Gouranga Mallik and Neela Nataraj
IMA Journal of Numerical Analysis 41 (1) 164 (2021)
https://doi.org/10.1093/imanum/drz071

Morley FEM for a Distributed Optimal Control Problem Governed by the von Kármán Equations

Sudipto Chowdhury, Neela Nataraj and Devika Shylaja
Computational Methods in Applied Mathematics 21 (1) 233 (2021)
https://doi.org/10.1515/cmam-2020-0030

Adaptive Morley FEM for the von Kármán Equations with Optimal Convergence Rates

Carsten Carstensen and Neela Nataraj
SIAM Journal on Numerical Analysis 59 (2) 696 (2021)
https://doi.org/10.1137/20M1335613

Existence, uniqueness, and numerical simulations of Föppl‐von Kármán equations for simply supported plate

Jana Alkhayal, Jean‐Paul Chehab and Mustapha Jazar
Mathematical Methods in the Applied Sciences 42 (18) 7482 (2019)
https://doi.org/10.1002/mma.5872

Reduced Basis Approaches for Parametrized Bifurcation Problems held by Non-linear Von Kármán Equations

Federico Pichi and Gianluigi Rozza
Journal of Scientific Computing 81 (1) 112 (2019)
https://doi.org/10.1007/s10915-019-01003-3

Justification and solvability of dynamical contact problems for generalized Marguerre–von Kármán shallow shells

Abderrezak Ghezal and Djamal Ahmed Chacha
ZAMM - Journal of Applied Mathematics and Mechanics / Zeitschrift für Angewandte Mathematik und Mechanik 98 (5) 749 (2018)
https://doi.org/10.1002/zamm.201500296

Error estimates for the numerical approximation of a distributed optimal control problem governed by the von Kármán equations

Gouranga Mallik, Neela Nataraj and Jean-Pierre Raymond
ESAIM: Mathematical Modelling and Numerical Analysis 52 (3) 1137 (2018)
https://doi.org/10.1051/m2an/2018023

A priori and a posteriori error control of discontinuous Galerkin finite element methods for the von Kármán equations

Carsten Carstensen, Gouranga Mallik and Neela Nataraj
IMA Journal of Numerical Analysis (2018)
https://doi.org/10.1093/imanum/dry003

A $$C^0$$ C 0 interior penalty method for a von Kármán plate

Susanne C. Brenner, Michael Neilan, Armin Reiser and Li-Yeng Sung
Numerische Mathematik 135 (3) 803 (2017)
https://doi.org/10.1007/s00211-016-0817-y

Conforming and nonconforming finite element methods for canonical von Kármán equations

Gouranga Mallik and Neela Nataraj
International Journal of Advances in Engineering Sciences and Applied Mathematics 7 (3) 86 (2015)
https://doi.org/10.1007/s12572-015-0137-y

AN IMPLEMENTATION OF THE METHOD OF FUNDAMENTAL SOLUTIONS FOR THE DYNAMIC RESPONSE OF VON KARMAN NONLINEAR PLATE MODEL

A. USCILOWSKA and D. BERENDT
International Journal of Computational Methods 10 (02) 1341005 (2013)
https://doi.org/10.1142/S0219876213410053

ON THE GENERALIZED VON KÁRMÁN EQUATIONS AND THEIR APPROXIMATION

PHILIPPE G. CIARLET, LILIANA GRATIE and SRINIVASAN KESAVAN
Mathematical Models and Methods in Applied Sciences 17 (04) 617 (2007)
https://doi.org/10.1142/S0218202507002042

On the numerical analysis of the Von Karman equations: Mixed finite element approximation and continuation techniques

Laure Reinhart
Numerische Mathematik 39 (3) 371 (1982)
https://doi.org/10.1007/BF01407870

Finite Element Approximation of the Navier-Stokes Equations

Lecture Notes in Mathematics, Finite Element Approximation of the Navier-Stokes Equations 749 104 (1981)
https://doi.org/10.1007/BFb0063451

An analysis of a mixed finite element method for the Navier-Stokes equations

V. Girault and P. A. Raviart
Numerische Mathematik 33 (3) 235 (1979)
https://doi.org/10.1007/BF01398643