The Citing articles tool gives a list of articles citing the current article. The citing articles come from EDP Sciences database, as well as other publishers participating in CrossRef Cited-by Linking Program . You can set up your personal account to receive an email alert each time this article is cited by a new article (see the menu on the right-hand side of the abstract page).
Cited article:
Garth A. Baker , James H. Bramble
RAIRO. Anal. numér., 13 2 (1979) 75-100
Published online: 2017-02-01
This article has been cited by the following article(s):
60 articles
On stability and error bounds of an explicit in time higher-order vector compact scheme for the multidimensional wave and acoustic wave equations
Alexander Zlotnik and Timofey Lomonosov Applied Numerical Mathematics 195 54 (2024) https://doi.org/10.1016/j.apnum.2023.09.006
On Construction and Properties of Compact 4th Order Finite-Difference Schemes for the Variable Coefficient Wave Equation
Alexander Zlotnik and Raimondas Čiegis Journal of Scientific Computing 95 (1) (2023) https://doi.org/10.1007/s10915-023-02127-3
Approximation of SPDE covariance operators by finite elements: a semigroup approach
Mihály Kovács, Annika Lang and Andreas Petersson IMA Journal of Numerical Analysis 43 (3) 1324 (2023) https://doi.org/10.1093/imanum/drac020
On stability and convergence of a three-layer semi-discrete scheme for an abstract analogue of the Ball integro-differential equation
Jemal Rogava, Mikheil Tsiklauri and Zurab Vashakidze Journal of Mathematical Analysis and Applications 518 (1) 126664 (2023) https://doi.org/10.1016/j.jmaa.2022.126664
Error analysis for space discretizations of quasilinear wave-type equations
Marlis Hochbruck and Bernhard Maier IMA Journal of Numerical Analysis 42 (3) 1963 (2022) https://doi.org/10.1093/imanum/drab073
Discontinuous Galerkin discretization in time of systems of second-order nonlinear hyperbolic equations
Aili Shao ESAIM: Mathematical Modelling and Numerical Analysis 56 (6) 2255 (2022) https://doi.org/10.1051/m2an/2022066
Weak convergence of fully discrete finite element approximations of semilinear hyperbolic SPDE with additive noise
Mihály Kovács, Annika Lang and Andreas Petersson ESAIM: Mathematical Modelling and Numerical Analysis 54 (6) 2199 (2020) https://doi.org/10.1051/m2an/2020012
Applications of Mathematics and Informatics in Natural Sciences and Engineering
Romeo Galdava, David Gulua and Jemal Rogava Springer Proceedings in Mathematics & Statistics, Applications of Mathematics and Informatics in Natural Sciences and Engineering 334 153 (2020) https://doi.org/10.1007/978-3-030-56356-1_10
A mass-lumped mixed finite element method for acoustic wave propagation
H. Egger and B. Radu Numerische Mathematik 145 (2) 239 (2020) https://doi.org/10.1007/s00211-020-01118-y
Approximate solution of nonlinear hyperbolic equations with homogeneous jump conditions
Matthew Olayiwola Adewole Journal of Numerical Analysis and Approximation Theory 48 (2) 122 (2019) https://doi.org/10.33993/jnaat482-1175
Approximation of linear hyperbolic interface problems on finite element: Some new estimates
Matthew O. Adewole Applied Mathematics and Computation 349 245 (2019) https://doi.org/10.1016/j.amc.2018.12.047
Super-convergence and post-processing for mixed finite element approximations of the wave equation
Herbert Egger and Bogdan Radu Numerische Mathematik 140 (2) 427 (2018) https://doi.org/10.1007/s00211-018-0966-2
Developing weak Galerkin finite element methods for the wave equation
Yunqing Huang, Jichun Li and Dan Li Numerical Methods for Partial Differential Equations 33 (3) 868 (2017) https://doi.org/10.1002/num.22127
Asad Anees and Lutz Angermann 1 (2016) https://doi.org/10.1109/ROPACES.2016.7465375
Convergence of a semi-discrete scheme for an abstract nonlinear second order evolution equation
J. Rogava and M. Tsiklauri Applied Numerical Mathematics 75 22 (2014) https://doi.org/10.1016/j.apnum.2012.09.004
Numerical Approximation of Exact Controls for Waves
Sylvain Ervedoza and Enrique Zuazua SpringerBriefs in Mathematics, Numerical Approximation of Exact Controls for Waves 59 (2013) https://doi.org/10.1007/978-1-4614-5808-1_3
A POSTERIORI L∞(L2)-ERROR ESTIMATES OF SEMIDISCRETE MIXED FINITE ELEMENT METHODS FOR HYPERBOLIC OPTIMAL CONTROL PROBLEMS
Tianliang Hou Bulletin of the Korean Mathematical Society 50 (1) 321 (2013) https://doi.org/10.4134/BKMS.2013.50.1.321
Numerical Approximation of Exact Controls for Waves
Sylvain Ervedoza and Enrique Zuazua SpringerBriefs in Mathematics, Numerical Approximation of Exact Controls for Waves 1 (2013) https://doi.org/10.1007/978-1-4614-5808-1_1
Control of Partial Differential Equations
Sylvain Ervedoza and Enrique Zuazua Lecture Notes in Mathematics, Control of Partial Differential Equations 2048 245 (2012) https://doi.org/10.1007/978-3-642-27893-8_5
The stability of rational approximations of cosine functions on Hilbert spaces
I. Alonso-Mallo, B. Cano and M.J. Moreta Applied Numerical Mathematics 59 (1) 21 (2009) https://doi.org/10.1016/j.apnum.2007.11.022
Finite element, discontinuous Galerkin, and finite difference evolution schemes in spacetime
G Zumbusch Classical and Quantum Gravity 26 (17) 175011 (2009) https://doi.org/10.1088/0264-9381/26/17/175011
Numerical methods for nonlinear second-order hyperbolic partial differential equations. II – Rothe’s techniques for 1-D problems
J.I. Ramos Applied Mathematics and Computation 190 (1) 804 (2007) https://doi.org/10.1016/j.amc.2007.01.080
A methodology for the formulation of error estimators for time integration in linear solid and structural dynamics
I. Romero and Luis M. Lacoma International Journal for Numerical Methods in Engineering 66 (4) 635 (2006) https://doi.org/10.1002/nme.1568
A posteriori error analysis for higher order dissipative methods for evolution problems
Charalambos Makridakis and Ricardo H. Nochetto Numerische Mathematik 104 (4) 489 (2006) https://doi.org/10.1007/s00211-006-0013-6
Order reduction and how to avoid it when explicit Runge–Kutta–Nyström methods are used to solve linear partial differential equations
I. Alonso-Mallo, B. Cano and M.J. Moreta Journal of Computational and Applied Mathematics 176 (2) 293 (2005) https://doi.org/10.1016/j.cam.2004.07.021
Stability analysis of linear multistep methods for classical elastodynamics
Ignacio Romero Computer Methods in Applied Mechanics and Engineering 193 (23-26) 2169 (2004) https://doi.org/10.1016/j.cma.2004.01.012
On the stability and convergence of fully discrete solutions in linear elastodynamics
Ignacio Romero Computer Methods in Applied Mechanics and Engineering 191 (35) 3857 (2002) https://doi.org/10.1016/S0045-7825(02)00320-1
Operator Theory and Numerical Methods
Studies in Mathematics and Its Applications, Operator Theory and Numerical Methods 30 275 (2001) https://doi.org/10.1016/S0168-2024(01)80009-6
Partial Differential Equations
Vidar Thomée Partial Differential Equations 1 (2001) https://doi.org/10.1016/B978-0-444-50616-0.50004-X
Numerical Analysis: Historical Developments in the 20th Century
Vidar Thomée Numerical Analysis: Historical Developments in the 20th Century 361 (2001) https://doi.org/10.1016/B978-0-444-50617-7.50016-1
From finite differences to finite elements
Vidar Thomée Journal of Computational and Applied Mathematics 128 (1-2) 1 (2001) https://doi.org/10.1016/S0377-0427(00)00507-0
A continuous space-time finite element method for the wave equation
Donald French and Todd Peterson Mathematics of Computation 65 (214) 491 (1996) https://doi.org/10.1090/S0025-5718-96-00685-0
Time-discrete finite element schemes for Maxwell's equations
Ch. G. Makridakis and P. Monk ESAIM: Mathematical Modelling and Numerical Analysis 29 (2) 171 (1995) https://doi.org/10.1051/m2an/1995290201711
Negative norm estimates for fully discrete finite element approximations to the wave equation with nonhomogeneous 𝐿₂ Dirichlet boundary data
L. Bales and I. Lasiecka Mathematics of Computation 64 (209) 89 (1995) https://doi.org/10.1090/S0025-5718-1995-1262280-9
Fully discrete methods for the nonlinear Schrödinger equation
H.Y. Lee Computers & Mathematics with Applications 28 (6) 9 (1994) https://doi.org/10.1016/0898-1221(94)00148-0
Semidiscrete and single step fully discrete finite element approximations for second order hyperbolic equations with nonsmooth solutions
L. A. Bales ESAIM: Mathematical Modelling and Numerical Analysis 27 (1) 55 (1993) https://doi.org/10.1051/m2an/1993270100551
Finite element approximations of nonlinear elastic waves
Charalambos G. Makridakis Mathematics of Computation 61 (204) 569 (1993) https://doi.org/10.1090/S0025-5718-1993-1195426-X
Analysis of a Finite Element Method for Maxwell’s Equations
Peter Monk SIAM Journal on Numerical Analysis 29 (3) 714 (1992) https://doi.org/10.1137/0729045
On mixed finite element methods for linear elastodynamics
Ch. G. Makridakis Numerische Mathematik 61 (1) 235 (1992) https://doi.org/10.1007/BF01385506
Two-layer projection-difference method with a splitting operator for the wave equation
A. A. Zlotnik Mathematical Notes 51 (4) 342 (1992) https://doi.org/10.1007/BF01250544
A Mixed Method for Approximating Maxwell’s Equations
Peter B. Monk SIAM Journal on Numerical Analysis 28 (6) 1610 (1991) https://doi.org/10.1137/0728081
Finite Element Methods (Part 1)
Hiroshi Fujita and Takashi Suzuki Handbook of Numerical Analysis, Finite Element Methods (Part 1) 2 789 (1991) https://doi.org/10.1016/S1570-8659(05)80043-2
The convergence of a Galerkin approximation scheme for an extensible beam
Tunc Geveci and Ian Christie ESAIM: Mathematical Modelling and Numerical Analysis 23 (4) 597 (1989) https://doi.org/10.1051/m2an/1989230405971
On the stability of rational approximations to the cosine with only imaginary poles
Laurence A. Bales, Ohannes A. Karakashian and Steve M. Serbin BIT 28 (3) 651 (1988) https://doi.org/10.1007/BF01941140
Galerkin methods for the time dependent incompressible elasticity equations
Barbara Kok and Tunc Geveci Journal of Computational and Applied Mathematics 18 (1) 53 (1987) https://doi.org/10.1016/0377-0427(87)90055-0
Runge-Kutta-Nyström methods for hyperbolic problems with time-dependent coefficients
O.A. Karakashian Computers & Mathematics with Applications 13 (9-11) 785 (1987) https://doi.org/10.1016/0898-1221(87)90164-7
Hyperbolic Partial Differential Equations
LAURENCE A. BALES Hyperbolic Partial Differential Equations 581 (1986) https://doi.org/10.1016/B978-0-08-034313-6.50019-5
Higher-order single-step fully discrete approximations for nonlinear second-order hyperbolic equations
Laurence A. Bales Computers & Mathematics with Applications 12 (4-5) 581 (1986) https://doi.org/10.1016/0898-1221(86)90183-5
Higher Order Single Step Fully Discrete Approximations for Second Order Hyperbolic Equations with Time Dependent Coefficients
Laurence A. Bales SIAM Journal on Numerical Analysis 23 (1) 27 (1986) https://doi.org/10.1137/0723003
Cosine methods for second-order hyperbolic equations with time-dependent coefficients
Laurence A. Bales, Vassilios A. Dougalis and Steven M. Serbin Mathematics of Computation 45 (171) 65 (1985) https://doi.org/10.1090/S0025-5718-1985-0790645-1
The convergence of Galerkin approximation schemes for second-order hyperbolic equations with dissipation
Barbara Kok and Tunc Geveci Mathematics of Computation 44 (170) 379 (1985) https://doi.org/10.1090/S0025-5718-1985-0777270-3
On the convergence of Galerkin approximation schemes for second-order hyperbolic equations in energy and negative norms
Tunc Geveci Mathematics of Computation 42 (166) 393 (1984) https://doi.org/10.1090/S0025-5718-1984-0736443-5
Semidiscrete and single step fully discrete approximations for second order hyperbolic equations with time-dependent coefficients
Laurence A. Bales Mathematics of Computation 43 (168) 383 (1984) https://doi.org/10.1090/S0025-5718-1984-0758190-6
Discrete Approximations of Cosine Operator Functions. I
Ronald H. W. Hoppe SIAM Journal on Numerical Analysis 19 (6) 1110 (1982) https://doi.org/10.1137/0719081
On the efficiency of some fully discrete Galerkin methods for second-order hyperbolic equations
Vassilios A. Dougalis and Steven M. Serbin Computers & Mathematics with Applications 7 (3) 261 (1981) https://doi.org/10.1016/0898-1221(81)90086-9
On the construction and analysis of approximations of arbitrarily high-order for proportionally-damped second order systems
Steven M. Serbin Computers & Mathematics with Applications 6 (2) 251 (1980) https://doi.org/10.1016/0898-1221(80)90033-4
Some remarks on a class of rational approximations to the cosine
Vassilios A. Dougalis and Steven M. Serbin BIT 20 (2) 204 (1980) https://doi.org/10.1007/BF01933192
An approximation theorem for second-order evolution equations
Garth A. Baker, Vassilios A. Dougalis and Steven M. Serbin Numerische Mathematik 35 (2) 127 (1980) https://doi.org/10.1007/BF01396311
On the 𝐿^{∞}-convergence of Galerkin approximations for second-order hyperbolic equations
Garth A. Baker and Vassilios A. Dougalis Mathematics of Computation 34 (150) 401 (1980) https://doi.org/10.1090/S0025-5718-1980-0559193-3
On Rational Approximations of Groups of Operators
Philip Brenner and Vidar Thomée SIAM Journal on Numerical Analysis 17 (1) 119 (1980) https://doi.org/10.1137/0717013