Articles citing this article

The Citing articles tool gives a list of articles citing the current article.
The citing articles come from EDP Sciences database, as well as other publishers participating in CrossRef Cited-by Linking Program. You can set up your personal account to receive an email alert each time this article is cited by a new article (see the menu on the right-hand side of the abstract page).

Cited article:

On stability and error bounds of an explicit in time higher-order vector compact scheme for the multidimensional wave and acoustic wave equations

Alexander Zlotnik and Timofey Lomonosov
Applied Numerical Mathematics 195 54 (2024)
https://doi.org/10.1016/j.apnum.2023.09.006

On Construction and Properties of Compact 4th Order Finite-Difference Schemes for the Variable Coefficient Wave Equation

Alexander Zlotnik and Raimondas Čiegis
Journal of Scientific Computing 95 (1) (2023)
https://doi.org/10.1007/s10915-023-02127-3

Approximation of SPDE covariance operators by finite elements: a semigroup approach

Mihály Kovács, Annika Lang and Andreas Petersson
IMA Journal of Numerical Analysis 43 (3) 1324 (2023)
https://doi.org/10.1093/imanum/drac020

On stability and convergence of a three-layer semi-discrete scheme for an abstract analogue of the Ball integro-differential equation

Jemal Rogava, Mikheil Tsiklauri and Zurab Vashakidze
Journal of Mathematical Analysis and Applications 518 (1) 126664 (2023)
https://doi.org/10.1016/j.jmaa.2022.126664

Error analysis for space discretizations of quasilinear wave-type equations

Marlis Hochbruck and Bernhard Maier
IMA Journal of Numerical Analysis 42 (3) 1963 (2022)
https://doi.org/10.1093/imanum/drab073

Discontinuous Galerkin discretization in time of systems of second-order nonlinear hyperbolic equations

Aili Shao
ESAIM: Mathematical Modelling and Numerical Analysis 56 (6) 2255 (2022)
https://doi.org/10.1051/m2an/2022066

Weak convergence of fully discrete finite element approximations of semilinear hyperbolic SPDE with additive noise

Mihály Kovács, Annika Lang and Andreas Petersson
ESAIM: Mathematical Modelling and Numerical Analysis 54 (6) 2199 (2020)
https://doi.org/10.1051/m2an/2020012

Applications of Mathematics and Informatics in Natural Sciences and Engineering

Romeo Galdava, David Gulua and Jemal Rogava
Springer Proceedings in Mathematics & Statistics, Applications of Mathematics and Informatics in Natural Sciences and Engineering 334 153 (2020)
https://doi.org/10.1007/978-3-030-56356-1_10

Approximate solution of nonlinear hyperbolic equations with homogeneous jump conditions

Matthew Olayiwola Adewole
Journal of Numerical Analysis and Approximation Theory 48 (2) 122 (2019)
https://doi.org/10.33993/jnaat482-1175

Approximation of linear hyperbolic interface problems on finite element: Some new estimates

Matthew O. Adewole
Applied Mathematics and Computation 349 245 (2019)
https://doi.org/10.1016/j.amc.2018.12.047

Super-convergence and post-processing for mixed finite element approximations of the wave equation

Herbert Egger and Bogdan Radu
Numerische Mathematik 140 (2) 427 (2018)
https://doi.org/10.1007/s00211-018-0966-2

Developing weak Galerkin finite element methods for the wave equation

Yunqing Huang, Jichun Li and Dan Li
Numerical Methods for Partial Differential Equations 33 (3) 868 (2017)
https://doi.org/10.1002/num.22127

Numerical Approximation of Exact Controls for Waves

Sylvain Ervedoza and Enrique Zuazua
SpringerBriefs in Mathematics, Numerical Approximation of Exact Controls for Waves 59 (2013)
https://doi.org/10.1007/978-1-4614-5808-1_3

A POSTERIORI L∞(L2)-ERROR ESTIMATES OF SEMIDISCRETE MIXED FINITE ELEMENT METHODS FOR HYPERBOLIC OPTIMAL CONTROL PROBLEMS

Tianliang Hou
Bulletin of the Korean Mathematical Society 50 (1) 321 (2013)
https://doi.org/10.4134/BKMS.2013.50.1.321

Numerical Approximation of Exact Controls for Waves

Sylvain Ervedoza and Enrique Zuazua
SpringerBriefs in Mathematics, Numerical Approximation of Exact Controls for Waves 1 (2013)
https://doi.org/10.1007/978-1-4614-5808-1_1

Numerical methods for nonlinear second-order hyperbolic partial differential equations. II – Rothe’s techniques for 1-D problems

J.I. Ramos
Applied Mathematics and Computation 190 (1) 804 (2007)
https://doi.org/10.1016/j.amc.2007.01.080

A methodology for the formulation of error estimators for time integration in linear solid and structural dynamics

I. Romero and Luis M. Lacoma
International Journal for Numerical Methods in Engineering 66 (4) 635 (2006)
https://doi.org/10.1002/nme.1568

A posteriori error analysis for higher order dissipative methods for evolution problems

Charalambos Makridakis and Ricardo H. Nochetto
Numerische Mathematik 104 (4) 489 (2006)
https://doi.org/10.1007/s00211-006-0013-6

Order reduction and how to avoid it when explicit Runge–Kutta–Nyström methods are used to solve linear partial differential equations

I. Alonso-Mallo, B. Cano and M.J. Moreta
Journal of Computational and Applied Mathematics 176 (2) 293 (2005)
https://doi.org/10.1016/j.cam.2004.07.021

Stability analysis of linear multistep methods for classical elastodynamics

Ignacio Romero
Computer Methods in Applied Mechanics and Engineering 193 (23-26) 2169 (2004)
https://doi.org/10.1016/j.cma.2004.01.012

Negative norm estimates for fully discrete finite element approximations to the wave equation with nonhomogeneous 𝐿₂ Dirichlet boundary data

L. Bales and I. Lasiecka
Mathematics of Computation 64 (209) 89 (1995)
https://doi.org/10.1090/S0025-5718-1995-1262280-9

Semidiscrete and single step fully discrete finite element approximations for second order hyperbolic equations with nonsmooth solutions

L. A. Bales
ESAIM: Mathematical Modelling and Numerical Analysis 27 (1) 55 (1993)
https://doi.org/10.1051/m2an/1993270100551

Analysis of a Finite Element Method for Maxwell’s Equations

Peter Monk
SIAM Journal on Numerical Analysis 29 (3) 714 (1992)
https://doi.org/10.1137/0729045

Two-layer projection-difference method with a splitting operator for the wave equation

A. A. Zlotnik
Mathematical Notes 51 (4) 342 (1992)
https://doi.org/10.1007/BF01250544

A Mixed Method for Approximating Maxwell’s Equations

Peter B. Monk
SIAM Journal on Numerical Analysis 28 (6) 1610 (1991)
https://doi.org/10.1137/0728081

The convergence of a Galerkin approximation scheme for an extensible beam

Tunc Geveci and Ian Christie
ESAIM: Mathematical Modelling and Numerical Analysis 23 (4) 597 (1989)
https://doi.org/10.1051/m2an/1989230405971

On the stability of rational approximations to the cosine with only imaginary poles

Laurence A. Bales, Ohannes A. Karakashian and Steve M. Serbin
BIT 28 (3) 651 (1988)
https://doi.org/10.1007/BF01941140

Higher-order single-step fully discrete approximations for nonlinear second-order hyperbolic equations

Laurence A. Bales
Computers & Mathematics with Applications 12 (4-5) 581 (1986)
https://doi.org/10.1016/0898-1221(86)90183-5

Higher Order Single Step Fully Discrete Approximations for Second Order Hyperbolic Equations with Time Dependent Coefficients

Laurence A. Bales
SIAM Journal on Numerical Analysis 23 (1) 27 (1986)
https://doi.org/10.1137/0723003

Cosine methods for second-order hyperbolic equations with time-dependent coefficients

Laurence A. Bales, Vassilios A. Dougalis and Steven M. Serbin
Mathematics of Computation 45 (171) 65 (1985)
https://doi.org/10.1090/S0025-5718-1985-0790645-1

Semidiscrete and single step fully discrete approximations for second order hyperbolic equations with time-dependent coefficients

Laurence A. Bales
Mathematics of Computation 43 (168) 383 (1984)
https://doi.org/10.1090/S0025-5718-1984-0758190-6

Discrete Approximations of Cosine Operator Functions. I

Ronald H. W. Hoppe
SIAM Journal on Numerical Analysis 19 (6) 1110 (1982)
https://doi.org/10.1137/0719081

On the efficiency of some fully discrete Galerkin methods for second-order hyperbolic equations

Vassilios A. Dougalis and Steven M. Serbin
Computers & Mathematics with Applications 7 (3) 261 (1981)
https://doi.org/10.1016/0898-1221(81)90086-9

On the construction and analysis of approximations of arbitrarily high-order for proportionally-damped second order systems

Steven M. Serbin
Computers & Mathematics with Applications 6 (2) 251 (1980)
https://doi.org/10.1016/0898-1221(80)90033-4

An approximation theorem for second-order evolution equations

Garth A. Baker, Vassilios A. Dougalis and Steven M. Serbin
Numerische Mathematik 35 (2) 127 (1980)
https://doi.org/10.1007/BF01396311

On Rational Approximations of Groups of Operators

Philip Brenner and Vidar Thomée
SIAM Journal on Numerical Analysis 17 (1) 119 (1980)
https://doi.org/10.1137/0717013