Articles citing this article

The Citing articles tool gives a list of articles citing the current article.
The citing articles come from EDP Sciences database, as well as other publishers participating in CrossRef Cited-by Linking Program. You can set up your personal account to receive an email alert each time this article is cited by a new article (see the menu on the right-hand side of the abstract page).

Cited article:

Anisotropic error analysis of weak Galerkin finite element method for singularly perturbed biharmonic problems

Aayushman Raina, Srinivasan Natesan and Şuayip Toprakseven
Mathematics and Computers in Simulation 229 203 (2025)
https://doi.org/10.1016/j.matcom.2024.09.017

Four-order superconvergent CDG finite elements for the biharmonic equation on triangular meshes

Xiu Ye and Shangyou Zhang
Journal of Computational and Applied Mathematics 440 115516 (2024)
https://doi.org/10.1016/j.cam.2023.115516

Finite element approximation for uniformly elliptic linear PDE of second order in nondivergence form

Ngoc Tien Tran
Mathematics of Computation (2024)
https://doi.org/10.1090/mcom/3966

A posteriori error estimates for nonconforming discretizations of singularly perturbed biharmonic operators

Dietmar Gallistl and Shudan Tian
The SMAI Journal of computational mathematics 10 355 (2024)
https://doi.org/10.5802/smai-jcm.115

Convergence of an adaptive C0-interior penalty Galerkin method for the biharmonic problem

Alexander Dominicus, Fernando D Gaspoz and Christian Kreuzer
IMA Journal of Numerical Analysis (2024)
https://doi.org/10.1093/imanum/drae069

Continuous interior penalty stabilization for divergence-free finite element methods

Gabriel R Barrenechea, Erik Burman, Ernesto Cáceres and Johnny Guzmán
IMA Journal of Numerical Analysis 44 (2) 980 (2024)
https://doi.org/10.1093/imanum/drad030

A stable and $$H^1$$-conforming divergence-free finite element pair for the Stokes problem using isoparametric mappings

Michael Neilan and M. Baris Otus
Calcolo 60 (3) (2023)
https://doi.org/10.1007/s10092-023-00531-7

An adaptive C0 Interior Penalty Discontinuous Galerkin method and an equilibrated a posteriori error estimator for the von Kármán equations

R.H.W. Hoppe
Applied Numerical Mathematics 190 27 (2023)
https://doi.org/10.1016/j.apnum.2023.01.004

A space-time adaptive discontinuous Galerkin method for the numerical solution of the dynamic quasi-static von Kármán equations

R.H.W. Hoppe
Computers & Mathematics with Applications 132 32 (2023)
https://doi.org/10.1016/j.camwa.2022.12.005

The interior penalty virtual element method for the biharmonic problem

Jikun Zhao, Shipeng Mao, Bei Zhang and Fei Wang
Mathematics of Computation 92 (342) 1543 (2023)
https://doi.org/10.1090/mcom/3828

A C0 Interior Penalty Discontinuous Galerkin Method and an equilibrated a posteriori error estimator for a nonlinear fourth order elliptic boundary value problem of p-biharmonic type

Ronald H.W. Hoppe
ESAIM: Mathematical Modelling and Numerical Analysis 56 (6) 2051 (2022)
https://doi.org/10.1051/m2an/2022058

Conforming and nonconforming finite element methods for biharmonic inverse source problem

M Thamban Nair and Devika Shylaja
Inverse Problems 38 (2) 025001 (2022)
https://doi.org/10.1088/1361-6420/ac3ec5

A posteriori error estimation for a C1 virtual element method of Kirchhoff plates

Mingqing Chen, Jianguo Huang and Sen Lin
Computers & Mathematics with Applications 120 132 (2022)
https://doi.org/10.1016/j.camwa.2022.05.001

Convergence of Adaptive Discontinuous Galerkin and $$C^0$$-Interior Penalty Finite Element Methods for Hamilton–Jacobi–Bellman and Isaacs Equations

Ellya L. Kawecki and Iain Smears
Foundations of Computational Mathematics 22 (2) 315 (2022)
https://doi.org/10.1007/s10208-021-09493-0

A medius error analysis for nonconforming virtual element methods for Poisson and biharmonic equations

Jianguo Huang and Yue Yu
Journal of Computational and Applied Mathematics 386 113229 (2021)
https://doi.org/10.1016/j.cam.2020.113229

Residual-Based A Posteriori Error Estimates for $hp$-Discontinuous Galerkin Discretizations of the Biharmonic Problem

Zhaonan Dong, Lorenzo Mascotto and Oliver J. Sutton
SIAM Journal on Numerical Analysis 59 (3) 1273 (2021)
https://doi.org/10.1137/20M1364114

A family of mixed finite elements for the biharmonic equations on triangular and tetrahedral grids

Jun Hu, Rui Ma and Min Zhang
Science China Mathematics 64 (12) 2793 (2021)
https://doi.org/10.1007/s11425-020-1883-9

Analysis of an interior penalty DG method for the quad-curl problem

Gang Chen, Weifeng Qiu and Liwei Xu
IMA Journal of Numerical Analysis 41 (4) 2990 (2021)
https://doi.org/10.1093/imanum/draa034

A new P1 weak Galerkin method for the Biharmonic equation

Xiu Ye, Shangyou Zhang and Zhimin Zhang
Journal of Computational and Applied Mathematics 364 112337 (2020)
https://doi.org/10.1016/j.cam.2019.07.002

Pointwise error estimates for 𝐶⁰ interior penalty approximation of biharmonic problems

D. Leykekhman
Mathematics of Computation 90 (327) 41 (2020)
https://doi.org/10.1090/mcom/3596

Improved L2 and H1 error estimates for the Hessian discretization method

Devika Shylaja
Numerical Methods for Partial Differential Equations 36 (5) 972 (2020)
https://doi.org/10.1002/num.22460

Staggered Taylor–Hood and Fortin elements for Stokes equations of pressure boundary conditions in Lipschitz domain

Zhijie Du, Huoyuan Duan and Wei Liu
Numerical Methods for Partial Differential Equations 36 (1) 185 (2020)
https://doi.org/10.1002/num.22425

Adaptive First-Order System Least-Squares Finite Element Methods for Second-Order Elliptic Equations in Nondivergence Form

Weifeng Qiu and Shun Zhang
SIAM Journal on Numerical Analysis 58 (6) 3286 (2020)
https://doi.org/10.1137/19M1271099

The Hessian Discretisation Method for Fourth Order Linear Elliptic Equations

Jérôme Droniou, Bishnu P. Lamichhane and Devika Shylaja
Journal of Scientific Computing 78 (3) 1405 (2019)
https://doi.org/10.1007/s10915-018-0814-7

A family of optimal Lagrange elements for Maxwell’s equations

Huoyuan Duan, Wei Liu, Junhua Ma, Roger C.E. Tan and Shangyou Zhang
Journal of Computational and Applied Mathematics 358 241 (2019)
https://doi.org/10.1016/j.cam.2019.03.022

Discrete Miranda–Talenti estimates and applications to linear and nonlinear PDEs

Michael Neilan and Mohan Wu
Journal of Computational and Applied Mathematics 356 358 (2019)
https://doi.org/10.1016/j.cam.2019.01.032

New Mixed Elements for Maxwell Equations

Huoyuan Duan, Zhijie Du, Wei Liu and Shangyou Zhang
SIAM Journal on Numerical Analysis 57 (1) 320 (2019)
https://doi.org/10.1137/18M1168054

Interior Penalty Discontinuous Galerkin Methods for Second Order Linear Non-divergence Form Elliptic PDEs

Xiaobing Feng, Michael Neilan and Stefan Schnake
Journal of Scientific Computing 74 (3) 1651 (2018)
https://doi.org/10.1007/s10915-017-0519-3

Generalized finite element systems for smooth differential forms and Stokes’ problem

Snorre H. Christiansen and Kaibo Hu
Numerische Mathematik 140 (2) 327 (2018)
https://doi.org/10.1007/s00211-018-0970-6

Two-Level Additive Schwarz Methods for Discontinuous Galerkin Approximations of the Biharmonic Equation

O. Karakashian and C. Collins
Journal of Scientific Computing 74 (1) 573 (2018)
https://doi.org/10.1007/s10915-017-0453-4

A two-energies principle for the biharmonic equation and ana posteriorierror estimator for an interior penalty discontinuous Galerkin approximation

Dietrich Braess, R.H.W. Hoppe and Christopher Linsenmann
ESAIM: Mathematical Modelling and Numerical Analysis 52 (6) 2479 (2018)
https://doi.org/10.1051/m2an/2016074

Analysis of discontinuous Galerkin methods using mesh-dependent norms and applications to problems with rough data

Emmanuil H. Georgoulis and Tristan Pryer
Calcolo 54 (4) 1533 (2017)
https://doi.org/10.1007/s10092-017-0240-5

Hermitian finite element complementing the Bogner–Fox–Schmit rectangle near curvilinear boundary

B. Dobronets and V. Shaydurov
Lobachevskii Journal of Mathematics 37 (5) 527 (2016)
https://doi.org/10.1134/S1995080216050036

A $$C^0$$ C 0 -Weak Galerkin Finite Element Method for the Biharmonic Equation

Lin Mu, Junping Wang, Xiu Ye and Shangyou Zhang
Journal of Scientific Computing 59 (2) 473 (2014)
https://doi.org/10.1007/s10915-013-9770-4

Mixed Finite Elements, Compatibility Conditions, and Applications

Richard S. Falk
Lecture Notes in Mathematics, Mixed Finite Elements, Compatibility Conditions, and Applications 1939 159 (2008)
https://doi.org/10.1007/978-3-540-78319-0_4

A hierarchic family of conforming finite elements for the solution of plate bending problems

C. Chinosi, G. Sacchi and T. Scapolla
Computer Methods in Applied Mechanics and Engineering 80 (1-3) 327 (1990)
https://doi.org/10.1016/0045-7825(90)90037-M

A family of higher order mixed finite element methods for plane elasticity

Douglas N. Arnold, Jim Douglas and Chaitan P. Gupta
Numerische Mathematik 45 (1) 1 (1984)
https://doi.org/10.1007/BF01379659