The Citing articles tool gives a list of articles citing the current article. The citing articles come from EDP Sciences database, as well as other publishers participating in CrossRef Cited-by Linking Program . You can set up your personal account to receive an email alert each time this article is cited by a new article (see the menu on the right-hand side of the abstract page).
Cited article:
Lois Mansfield
RAIRO. Anal. numér., 16 1 (1982) 49-66
Published online: 2017-01-31
This article has been cited by the following article(s):
35 articles
A parallel grad-div stabilized finite element algorithm for the Stokes equations with damping
Ye Jiang, Bo Zheng and Yueqiang Shang Computers & Mathematics with Applications 135 171 (2023) https://doi.org/10.1016/j.camwa.2023.01.033
NewH(div)-conforming multiscale hybrid-mixed methods for the elasticity problem on polygonal meshes
Philippe R. B. Devloo, Agnaldo M. Farias, Sônia M. Gomes, et al. ESAIM: Mathematical Modelling and Numerical Analysis 55 (3) 1005 (2021) https://doi.org/10.1051/m2an/2021013
Local and parallel finite element algorithms for the time-dependent Oseen equations
Qi Ding, Bo Zheng and Yueqiang Shang Numerical Algorithms 87 (4) 1653 (2021) https://doi.org/10.1007/s11075-020-01024-2
Enriched two dimensional mixed finite element models for linear elasticity with weak stress symmetry
Philippe R.B. Devloo, Sônia M. Gomes, Thiago O. Quinelato and Shudan Tian Computers & Mathematics with Applications 79 (9) 2678 (2020) https://doi.org/10.1016/j.camwa.2019.12.004
A two-level fully discrete finite element variational multiscale method for the unsteady Navier–Stokes equations
Jufeng Xue and Yueqiang Shang Computational and Applied Mathematics 38 (2) (2019) https://doi.org/10.1007/s40314-019-0798-4
Local and parallel finite element algorithm based on the partition of unity method for the incompressible MHD flow
Xiaojing Dong, Yinnian He, Hongbo Wei and Yuhong Zhang Advances in Computational Mathematics 44 (4) 1295 (2018) https://doi.org/10.1007/s10444-017-9582-4
A three-step Oseen correction method for the steady Navier–Stokes equations
Yueqiang Shang Journal of Engineering Mathematics 111 (1) 145 (2018) https://doi.org/10.1007/s10665-018-9959-5
A second-order finite element variational multiscale scheme for the fully discrete unsteady Navier–Stokes equations
Jufeng Xue and Yueqiang Shang Journal of Applied Mathematics and Computing 58 (1-2) 95 (2018) https://doi.org/10.1007/s12190-017-1135-y
Encyclopedia of Computational Mechanics Second Edition
F. Auricchio, L. Beirão da Veiga, F. Brezzi and C. Lovadina Encyclopedia of Computational Mechanics Second Edition 1 (2017) https://doi.org/10.1002/9781119176817.ecm004
A Study of Two Modes of Locking in Poroelasticity
Son-Young Yi SIAM Journal on Numerical Analysis 55 (4) 1915 (2017) https://doi.org/10.1137/16M1056109
F. Auricchio, L. Beirão da Veiga, F. Brezzi and C. Lovadina 1 (2017) https://doi.org/10.1002/9781119176817.ecm2004
A Simplified Parallel Two-Level Iterative Method for Simulation of Incompressible Navier-Stokes Equations
Yueqiang Shang and Jin Qin Advances in Applied Mathematics and Mechanics 7 (6) 715 (2015) https://doi.org/10.4208/aamm.2014.m464
A parallel finite element variational multiscale method based on fully overlapping domain decomposition for incompressible flows
Yueqiang Shang Numerical Methods for Partial Differential Equations 31 (3) 856 (2015) https://doi.org/10.1002/num.21923
A Parallel Subgrid Stabilized Finite Element Method Based on Two-Grid Discretization for Simulation of 2D/3D Steady Incompressible Flows
Yueqiang Shang and Shumei Huang Journal of Scientific Computing 60 (3) 564 (2014) https://doi.org/10.1007/s10915-013-9806-9
Error analysis of a fully discrete finite element variational multiscale method for time‐dependent incompressible Navier–Stokes equations
Yueqiang Shang Numerical Methods for Partial Differential Equations 29 (6) 2025 (2013) https://doi.org/10.1002/num.21787
A parallel subgrid stabilized finite element method based on fully overlapping domain decomposition for the Navier–Stokes equations
Yueqiang Shang Journal of Mathematical Analysis and Applications 403 (2) 667 (2013) https://doi.org/10.1016/j.jmaa.2013.02.060
A two-level subgrid stabilized Oseen iterative method for the steady Navier–Stokes equations
Yueqiang Shang Journal of Computational Physics 233 210 (2013) https://doi.org/10.1016/j.jcp.2012.08.024
A parallel Oseen-linearized algorithm for the stationary Navier–Stokes equations
Yueqiang Shang and Yinnian He Computer Methods in Applied Mechanics and Engineering 209-212 172 (2012) https://doi.org/10.1016/j.cma.2011.11.003
A new parallel finite element algorithm for the stationary Navier–Stokes equations
Yueqiang Shang, Yinnian He, Do Wan Kim and Xiaojun Zhou Finite Elements in Analysis and Design 47 (11) 1262 (2011) https://doi.org/10.1016/j.finel.2011.06.001
Parallel iterative finite element algorithms based on full domain partition for the stationary Navier–Stokes equations
Yueqiang Shang and Yinnian He Applied Numerical Mathematics 60 (7) 719 (2010) https://doi.org/10.1016/j.apnum.2010.03.013
Local and parallel finite element algorithms for the stokes problem
Yinnian He, Jinchao Xu, Aihui Zhou and Jian Li Numerische Mathematik 109 (3) 415 (2008) https://doi.org/10.1007/s00211-008-0141-2
Inf-sup stable non-conforming finite elements of arbitrary order on triangles
Gunar Matthies and Lutz Tobiska Numerische Mathematik 102 (2) 293 (2005) https://doi.org/10.1007/s00211-005-0648-8
Ferdinando Auricchio, Franco Brezzi and Carlo Lovadina (2004) https://doi.org/10.1002/0470091355.ecm004
Higher Order Triangular Finite Elements with Mass Lumping for the Wave Equation
G. Cohen, P. Joly, J. E. Roberts and N. Tordjman SIAM Journal on Numerical Analysis 38 (6) 2047 (2001) https://doi.org/10.1137/S0036142997329554
A Penalized Finite-Element Method for a Compressible Stokes System
R. Bruce Kellogg and Biyue Liu SIAM Journal on Numerical Analysis 34 (3) 1093 (1997) https://doi.org/10.1137/S0036142994273276
Handbook of Computational Fluid Mechanics
Max D. Gunzburger Handbook of Computational Fluid Mechanics 99 (1996) https://doi.org/10.1016/B978-012553010-1/50004-9
Two-level Picard and modified Picard methods for the Navier-Stokes equations
W. Layton and W. Lenferink Applied Mathematics and Computation 69 (2-3) 263 (1995) https://doi.org/10.1016/0096-3003(94)00134-P
Local error estimates for finite element discretization of the Stokes equations
Douglas N. Arnold and Liu Xiaobo ESAIM: Mathematical Modelling and Numerical Analysis 29 (3) 367 (1995) https://doi.org/10.1051/m2an/1995290303671
Finite Element Methods for Viscous Incompressible Flows
Finite Element Methods for Viscous Incompressible Flows 241 (1989) https://doi.org/10.1016/B978-0-12-307350-1.50037-5
Convergence and nonlinear stability of the Lagrange-Galerkin method for the Navier-Stokes equations
Endre S�li Numerische Mathematik 53 (4) 459 (1988) https://doi.org/10.1007/BF01396329
Finite element approximation of stationary interior viscous flow problems
L. Mansfield Computers & Mathematics with Applications 14 (4) 249 (1987) https://doi.org/10.1016/0898-1221(87)90132-5
On the construction of optimal mixed finite element methods for the linear elasticity problem
Rolf Stenberg Numerische Mathematik 48 (4) 447 (1986) https://doi.org/10.1007/BF01389651
A Conforming Finite Element Method for the Time-Dependent Navier–Stokes Equations
Christine Bernardi and Geneviève Raugel SIAM Journal on Numerical Analysis 22 (3) 455 (1985) https://doi.org/10.1137/0722027
Analysis of mixed finite elements methods for the Stokes problem: a unified approach
Rolf Stenberg Mathematics of Computation 42 (165) 9 (1984) https://doi.org/10.1090/S0025-5718-1984-0725982-9
Stability of Finite Elements under Divergence Constraints
J. M. Boland and R. A. Nicolaides SIAM Journal on Numerical Analysis 20 (4) 722 (1983) https://doi.org/10.1137/0720048