Articles citing this article

The Citing articles tool gives a list of articles citing the current article.
The citing articles come from EDP Sciences database, as well as other publishers participating in CrossRef Cited-by Linking Program. You can set up your personal account to receive an email alert each time this article is cited by a new article (see the menu on the right-hand side of the abstract page).

Cited article:

A new thin layer model for viscous flow between two nearby non‐static surfaces

José M. Rodríguez and Raquel Taboada‐Vázquez
ZAMM - Journal of Applied Mathematics and Mechanics / Zeitschrift für Angewandte Mathematik und Mechanik 103 (12) (2023)
https://doi.org/10.1002/zamm.202200571

One-dimensional viscoelastic von Kármán theories derived from nonlinear thin-walled beams

Manuel Friedrich and Lennart Machill
Calculus of Variations and Partial Differential Equations 62 (7) (2023)
https://doi.org/10.1007/s00526-023-02525-3

A numerical two-scale approach for nonlinear hyperelastic beams and beam networks

Helen Le Clézio, Claire Lestringant and Dennis M. Kochmann
International Journal of Solids and Structures 276 112307 (2023)
https://doi.org/10.1016/j.ijsolstr.2023.112307

Two New Models for Dynamic Linear Elastic Beams and Simplifications for Double Symmetric Cross-Sections

Erick Pruchnicki
Symmetry 14 (6) 1093 (2022)
https://doi.org/10.3390/sym14061093

Asymptotic analysis of a thin fluid layer flow between two moving surfaces

J.M. Rodríguez and R. Taboada-Vázquez
Journal of Mathematical Analysis and Applications 507 (1) 125735 (2022)
https://doi.org/10.1016/j.jmaa.2021.125735

A novel reduced model for a linearized anisotropic rod with doubly symmetric a cross-section: I. Theory

Erick Pruchnicki, Xiaoyi Chen and Hui-Hui Dai
Mathematics and Mechanics of Solids 27 (8) 1455 (2022)
https://doi.org/10.1177/10812865221094507

Derivation of a one-dimensional von Kármán theory for viscoelastic ribbons

Manuel Friedrich and Lennart Machill
Nonlinear Differential Equations and Applications NoDEA 29 (2) (2022)
https://doi.org/10.1007/s00030-021-00745-0

New refined model for curved linear anisotropic rods with circular cross section

Erick Pruchnicki, Xiaoyi Chen and Hui-Hui Dai
Applications in Engineering Science 6 100046 (2021)
https://doi.org/10.1016/j.apples.2021.100046

Asymptotic derivation of high-order rod models from non-linear 3D elasticity

Basile Audoly and Claire Lestringant
Journal of the Mechanics and Physics of Solids 148 104264 (2021)
https://doi.org/10.1016/j.jmps.2020.104264

On a consistent rod theory for a linearized anisotropic elastic material: I. Asymptotic reduction method

Xiaoyi Chen, Hui-Hui Dai and Erick Pruchnicki
Mathematics and Mechanics of Solids 26 (2) 217 (2021)
https://doi.org/10.1177/1081286520949602

Asymptotic analysis of an elastic rod with rounded ends

Sergey A. Nazarov, Andrey S. Slutskij and Jari Taskinen
Mathematical Methods in the Applied Sciences 43 (10) 6396 (2020)
https://doi.org/10.1002/mma.6380

New refined models for curved beams in both linear and nonlinear settings

Erick Pruchnicki and Hui-Hui Dai
Mathematics and Mechanics of Solids 24 (7) 2295 (2019)
https://doi.org/10.1177/1081286518825389

Characterization of the Bernoulli–Navier model for a rectangular section beam as the limit of the Kirchhoff–Love model for a plate

C. Ribeiro, J. M. Viaño, J. Figueiredo and Á. Rodríguez-Arós
Zeitschrift für angewandte Mathematik und Physik 67 (5) (2016)
https://doi.org/10.1007/s00033-016-0710-7

A model for bending and stretching of piezoelectric rods obtained by asymptotic analysis

J. M. Viaño, J. Figueiredo, C. Ribeiro and Á. Rodríguez-Arós
Zeitschrift für angewandte Mathematik und Physik 66 (3) 1207 (2015)
https://doi.org/10.1007/s00033-014-0438-1

Three-point bending tests-Part I: Mathematical study and asymptotic analysis

P. Quintela and M. T. Sánchez
Mathematical Methods in the Applied Sciences 34 (10) 1211 (2011)
https://doi.org/10.1002/mma.1434

A LARGE DEFORMATION, VISCOELASTIC, THIN ROD MODEL: DERIVATION AND ANALYSIS

J. BEYROUTHY and H. LE DRET
Mathematical Models and Methods in Applied Sciences 19 (10) 1907 (2009)
https://doi.org/10.1142/S0218202509003954

Derivation of the model of elastic curved rods from three-dimensional micropolar elasticity

Ibrahim Aganović, Josip Tambača and Zvonimir Tutek
ANNALI DELL'UNIVERSITA' DI FERRARA 53 (2) 109 (2007)
https://doi.org/10.1007/s11565-007-0017-x

Derivation and Justification of the Models of Rods and Plates From Linearized Three-Dimensional Micropolar Elasticity

Ibrahim Aganović, Josip Tambača and Zvonimir Tutek
Journal of Elasticity 84 (2) 131 (2006)
https://doi.org/10.1007/s10659-006-9060-6

The influence of the type of loading on the asymptotic behavior of slender elastic rings

Jean-Jacques Marigo and Kamyar Madani
Journal of Elasticity 75 (2) 91 (2005)
https://doi.org/10.1007/s10659-005-3397-0

Minimal requirements on the smoothness of data preserving accuracy of a one-dimensional model of rods

S. A. Nazarov
Journal of Mathematical Sciences 101 (2) 2987 (2000)
https://doi.org/10.1007/BF02672182

Asymptotic analysis of torsional and stretching modes of thin rods

H. Irago, N. Kerdid and J. M. Viaño
Quarterly of Applied Mathematics 58 (3) 495 (2000)
https://doi.org/10.1090/qam/1770651

Justification of the asymptotic theory of thin rods. Integral and pointwise estimates

S. A. Nazarov
Journal of Mathematical Sciences 97 (4) 4245 (1999)
https://doi.org/10.1007/BF02365044

Asymptotic derivation of a general linear model for thin-walled elastic rods

J.M. Rodríguez and J.M. Viaño
Computer Methods in Applied Mechanics and Engineering 147 (3-4) 287 (1997)
https://doi.org/10.1016/S0045-7825(97)00019-4

Mathematical Elasticity - Volume II: Theory of Plates

Philippe G. Ciarlet
Studies in Mathematics and Its Applications, Mathematical Elasticity - Volume II: Theory of Plates 27 xix (1997)
https://doi.org/10.1016/S0168-2024(97)80003-3

Quelques modèles asymptotiques pour les poutres purement encastrées

Lino J. Alvarez-Vázquez, Adela R. Rodríguez and Juan M. Viaño
Comptes Rendus de l'Académie des Sciences - Series I - Mathematics 324 (12) 1425 (1997)
https://doi.org/10.1016/S0764-4442(97)83587-2

Justification d'un modèle linéaire bi-dimensionnel de coques «faiblement courbées» en coordonnées curvilignes

Stéphane Busse, Philippe G. Ciarlet and Bernadette Miara
ESAIM: Mathematical Modelling and Numerical Analysis 31 (3) 409 (1997)
https://doi.org/10.1051/m2an/1997310304091

Mathematical Elasticity - Volume II: Theory of Plates

Philippe G. Ciarlet
Studies in Mathematics and Its Applications, Mathematical Elasticity - Volume II: Theory of Plates 27 3 (1997)
https://doi.org/10.1016/S0168-2024(97)80007-0

Finite Element Methods (Part 2), Numerical Methods for Solids (Part 2)

L. Trabucho and J.M. Viaño
Handbook of Numerical Analysis, Finite Element Methods (Part 2), Numerical Methods for Solids (Part 2) 4 487 (1996)
https://doi.org/10.1016/S1570-8659(96)80006-8

Asymptotic analysis of linearly elastic shells. I. Justification of membrane shell equations

Philippe G. Ciarlet and Véronique Lods
Archive for Rational Mechanics and Analysis 136 (2) 119 (1996)
https://doi.org/10.1007/BF02316975

Derivation of an evolution model for nonlinearly elastic beams by asymptotic expansion methods

L Alvarez-Vazquez and J.M Viaño
Computer Methods in Applied Mechanics and Engineering 115 (1-2) 53 (1994)
https://doi.org/10.1016/0045-7825(94)90186-4

Asymptotic justification of an evolution linear thermoelastic model for rods

L Alvarez-Vazquez and J.M Viaño
Computer Methods in Applied Mechanics and Engineering 115 (1-2) 93 (1994)
https://doi.org/10.1016/0045-7825(94)90189-9

An asymptotic general model for linear elastic homogeneous anisotropic rods

J. A. Alvarez‐Dios and J. M. Viaño
International Journal for Numerical Methods in Engineering 36 (18) 3067 (1993)
https://doi.org/10.1002/nme.1620361804

A new approach of Timoshenko's beam theory by asymptotic expansion method

L. Trabucho and J. M. Viaño
ESAIM: Mathematical Modelling and Numerical Analysis 24 (5) 651 (1990)
https://doi.org/10.1051/m2an/1990240506511

Asymptotic theory and analysis for displacements and stress distribution in nonlinear elastic straight slender rods

A. Cimetière, G. Geymonat, H. Le Dret, A. Raoult and Z. Tutek
Journal of Elasticity 19 (2) 111 (1988)
https://doi.org/10.1007/BF00040890

A derivation of generalized saint venant’s torsion theory from three-dimensional elasticity by asymptotic expansion methods

L. Trabucho and J. M. Viañ
Applicable Analysis 31 (1-2) 129 (1988)
https://doi.org/10.1080/00036818808839820

Numerical Approximation of Partial Differential Equations, Selection of Papers Presented at the International Symposium on NumericalAnalysis held at the Polytechnic University of Madrid

Philippe G. Ciarlet
North-Holland Mathematics Studies, Numerical Approximation of Partial Differential Equations, Selection of Papers Presented at the International Symposium on NumericalAnalysis held at the Polytechnic University of Madrid 133 3 (1987)
https://doi.org/10.1016/S0304-0208(08)71716-X