Articles citing this article

The Citing articles tool gives a list of articles citing the current article.
The citing articles come from EDP Sciences database, as well as other publishers participating in CrossRef Cited-by Linking Program. You can set up your personal account to receive an email alert each time this article is cited by a new article (see the menu on the right-hand side of the abstract page).

Cited article:

Modelling of 2-D seismic wave propagation in heterogeneous porous media: a frequency-domain finite-element method formulated by variational principles

Dongdong Wang, Yongxin Gao, Guanqun Zhou and Yaochang Jiang
Geophysical Journal International 239 (3) 1729 (2024)
https://doi.org/10.1093/gji/ggae331

Partitioned analysis of acoustic fluid–solid-saturated porous medium interaction problems by a generalized saturated porous medium model and localized Lagrange multipliers

Jiao Zhang, Shaolin Chen and Hongquan Liu
Computers and Geotechnics 170 106271 (2024)
https://doi.org/10.1016/j.compgeo.2024.106271

Modelling of two-dimensional seismic waves in double-porosity media using the frequency-domain finite-element method

Yaochang Jiang, Yongxin Gao, Dongdong Wang, Yongjia Song, Guanqun Zhou and Cheng Yao
Geophysical Journal International 240 (1) 400 (2024)
https://doi.org/10.1093/gji/ggae356

Analysis of an Embedded-Hybridizable Discontinuous Galerkin Method for Biot’s Consolidation Model

Aycil Cesmelioglu, Jeonghun J. Lee and Sander Rhebergen
Journal of Scientific Computing 97 (3) (2023)
https://doi.org/10.1007/s10915-023-02373-5

A weight-adjusted discontinuous Galerkin method for the poroelastic wave equation: Penalty fluxes and micro-heterogeneities

Khemraj Shukla, Jesse Chan, Maarten V. de Hoop and Priyank Jaiswal
Journal of Computational Physics 403 109061 (2020)
https://doi.org/10.1016/j.jcp.2019.109061

A nodal discontinuous Galerkin finite element method for the poroelastic wave equation

Khemraj Shukla, Jan S. Hesthaven, José M. Carcione, et al.
Computational Geosciences 23 (3) 595 (2019)
https://doi.org/10.1007/s10596-019-9809-1

A discontinuous Galerkin method for wave propagation in orthotropic poroelastic media with memory terms

Jiangming Xie, M. Yvonne Ou and Liwei Xu
Journal of Computational Physics 397 108865 (2019)
https://doi.org/10.1016/j.jcp.2019.108865

Three-Dimensional Mapped-Grid Finite Volume Modeling of Poroelastic-Fluid Wave Propagation

Grady I. Lemoine
SIAM Journal on Scientific Computing 38 (5) B808 (2016)
https://doi.org/10.1137/130934866

Solution of coupled poroelastic/acoustic/elastic wave propagation problems using automatic hp-adaptivity

Paweł J. Matuszyk and Leszek F. Demkowicz
Computer Methods in Applied Mechanics and Engineering 281 54 (2014)
https://doi.org/10.1016/j.cma.2014.07.030

High-Resolution Finite Volume Modeling of Wave Propagation in Orthotropic Poroelastic Media

Grady I. Lemoine, M. Yvonne Ou and Randall J. LeVeque
SIAM Journal on Scientific Computing 35 (1) B176 (2013)
https://doi.org/10.1137/120878720

Computational poroelasticity — A review

José M. Carcione, Christina Morency and Juan E. Santos
GEOPHYSICS 75 (5) 75A229 (2010)
https://doi.org/10.1190/1.3474602

Finite Element Methods for a Composite Model in Elastodynamics

Juan Enrique Santos, Jim Douglas, Jr. and Alberto Pedro Calderon
SIAM Journal on Numerical Analysis 25 (3) 513 (1988)
https://doi.org/10.1137/0725033

Numerical methods for a model for wave propagation in composite anisotropic media

Oscar Mario Lovera and Juan Enrique Santos
ESAIM: Mathematical Modelling and Numerical Analysis 22 (1) 159 (1988)
https://doi.org/10.1051/m2an/1988220101591