Articles citing this article

The Citing articles tool gives a list of articles citing the current article.
The citing articles come from EDP Sciences database, as well as other publishers participating in CrossRef Cited-by Linking Program. You can set up your personal account to receive an email alert each time this article is cited by a new article (see the menu on the right-hand side of the abstract page).

Cited article:

Data-driven state-space and Koopman operator models of coherent state dynamics on invariant manifolds

C. Ricardo Constante-Amores and Michael D. Graham
Journal of Fluid Mechanics 984 (2024)
https://doi.org/10.1017/jfm.2024.284

Turbulence Closure With Small, Local Neural Networks: Forced Two‐Dimensional and β‐Plane Flows

Kaushik Srinivasan, Mickaël D. Chekroun and James C. McWilliams
Journal of Advances in Modeling Earth Systems 16 (4) (2024)
https://doi.org/10.1029/2023MS003795

Nonlinear Vibration Analysis of a Twin-Spool Rotor Through a Nonlinear Galerkin Reduced Model

Yue Xu, Jin Huang, Yuefang Wang, Cong Li and Xuemin Wei
Journal of Vibration Engineering & Technologies 11 (6) 2565 (2023)
https://doi.org/10.1007/s42417-023-01054-9

Theoretical tools for understanding the climate crisis from Hasselmann’s programme and beyond

Valerio Lucarini and Mickaël D. Chekroun
Nature Reviews Physics 5 (12) 744 (2023)
https://doi.org/10.1038/s42254-023-00650-8

Optimal parameterizing manifolds for anticipating tipping points and higher-order critical transitions

Mickaël D. Chekroun, Honghu Liu and James C. McWilliams
Chaos: An Interdisciplinary Journal of Nonlinear Science 33 (9) (2023)
https://doi.org/10.1063/5.0167419

An approximate inertial manifold (AIM) based closure for turbulent flows

Maryam Akram, Malik Hassanaly and Venkat Raman
AIP Advances 12 (7) (2022)
https://doi.org/10.1063/5.0097981

On the Existence of Strong Solutions to the Cahn--Hilliard--Darcy System with Mass Source

Andrea Giorgini, Kei Fong Lam, Elisabetta Rocca and Giulio Schimperna
SIAM Journal on Mathematical Analysis 54 (1) 737 (2022)
https://doi.org/10.1137/20M1376443

Dynamics and Fault Diagnosis of Nonlinear Rotors and Impellers

M. Nauman Aslam, Jiazhong Zhang, Nannan Dang and Riaz Ahmad
Nonlinear Systems and Complexity, Dynamics and Fault Diagnosis of Nonlinear Rotors and Impellers 34 249 (2022)
https://doi.org/10.1007/978-3-030-94301-1_11

An Approximate Inertial Manifold (Aim) Based Closure for Turbulent Flows

Maryam Akram, Malik Hassanaly and Venkat Raman
SSRN Electronic Journal (2022)
https://doi.org/10.2139/ssrn.4007904

Data-driven reduced-order modeling of spatiotemporal chaos with neural ordinary differential equations

Alec J. Linot and Michael D. Graham
Chaos: An Interdisciplinary Journal of Nonlinear Science 32 (7) (2022)
https://doi.org/10.1063/5.0069536

Using approximate inertial manifold approach to model turbulent non-premixed combustion

Maryam Akram and Venkat Raman
Physics of Fluids 33 (3) (2021)
https://doi.org/10.1063/5.0039402

Fully discrete numerical schemes of a data assimilation algorithm: uniform-in-time error estimates

Hussain A Ibdah, Cecilia F Mondaini and Edriss S Titi
IMA Journal of Numerical Analysis 40 (4) 2584 (2020)
https://doi.org/10.1093/imanum/drz043

Long Time Behavior of Solutions to the 2D Boussinesq Equations with Zero Diffusivity

Igor Kukavica and Weinan Wang
Journal of Dynamics and Differential Equations 32 (4) 2061 (2020)
https://doi.org/10.1007/s10884-019-09802-w

A priori analysis of reduced description of dynamical systems using approximate inertial manifolds

Maryam Akram, Malik Hassanaly and Venkat Raman
Journal of Computational Physics 409 109344 (2020)
https://doi.org/10.1016/j.jcp.2020.109344

Variational Approach to Closure of Nonlinear Dynamical Systems: Autonomous Case

Mickaël D. Chekroun, Honghu Liu and James C. McWilliams
Journal of Statistical Physics 179 (5-6) 1073 (2020)
https://doi.org/10.1007/s10955-019-02458-2

Uniform-in-Time Error Estimates for the Postprocessing Galerkin Method Applied to a Data Assimilation Algorithm

Cecilia F. Mondaini and Edriss S. Titi
SIAM Journal on Numerical Analysis 56 (1) 78 (2018)
https://doi.org/10.1137/16M110962X

Scale matters

L. G. Margolin
Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 376 (2118) 20170235 (2018)
https://doi.org/10.1098/rsta.2017.0235

Nonlinear Galerkin finite element method applied to the system of reaction–diffusion equations in one space dimension

Jan Mach, Michal Beneš and Pavel Strachota
Computers & Mathematics with Applications 73 (9) 2053 (2017)
https://doi.org/10.1016/j.camwa.2017.02.032

Long time behavior for a dissipative shallow water model

V. Sciacca, M.E. Schonbek and M. Sammartino
Annales de l'Institut Henri Poincaré C, Analyse non linéaire 34 (3) 731 (2017)
https://doi.org/10.1016/j.anihpc.2016.05.003

Uniform quasi-differentiability of semigroup to nonlinear reaction-diffusion equations with supercritical exponent

Yansheng ZHONG and Chunyou SUN
Acta Mathematica Scientia 37 (2) 301 (2017)
https://doi.org/10.1016/S0252-9602(17)30003-6

The emergence of fast oscillations in a reduced primitive equation model and its implications for closure theories

Mickaël D. Chekroun, Honghu Liu and James C. McWilliams
Computers & Fluids 151 3 (2017)
https://doi.org/10.1016/j.compfluid.2016.07.005

A new nonlinear Galerkin finite element method for the computation of reaction diffusion equations

Rongpei Zhang, Jiang Zhu, Abimael F.D. Loula and Xijun Yu
Journal of Mathematical Analysis and Applications 434 (1) 136 (2016)
https://doi.org/10.1016/j.jmaa.2015.08.057

Robust error estimates for stabilized finite element approximations of the two dimensional Navier–Stokes’ equations at high Reynolds number

Erik Burman
Computer Methods in Applied Mechanics and Engineering 288 2 (2015)
https://doi.org/10.1016/j.cma.2014.11.006

A modified nonlinear spectral Galerkin method for the equations of motion arising in the Kelvin–Voigt fluids

Amiya K. Pani, Ambit K. Pany, Pedro Damazio and Jin Yun Yuan
Applicable Analysis 93 (8) 1587 (2014)
https://doi.org/10.1080/00036811.2013.841143

Pullback attractors for the non-autonomous 2D Navier--Stokes equations for minimally regular forcing

Julia García-Luengo, Pedro Marín-Rubio, José Real and James C. Robinson
Discrete & Continuous Dynamical Systems - A 34 (1) 203 (2014)
https://doi.org/10.3934/dcds.2014.34.203

A two‐level method in space and time for the Navier‐Stokes equations

Qingfang Liu, Yanren Hou and Qingchang Liu
Numerical Methods for Partial Differential Equations 29 (5) 1504 (2013)
https://doi.org/10.1002/num.21764

On the regularity for the Boussinesq equations in a bounded domain

Weiwei Hu, Igor Kukavica and Mohammed Ziane
Journal of Mathematical Physics 54 (8) (2013)
https://doi.org/10.1063/1.4817595

Simulating Stochastic Inertial Manifolds by a Backward-Forward Approach

Xingye Kan, Jinqiao Duan, Ioannis G. Kevrekidis and Anthony J. Roberts
SIAM Journal on Applied Dynamical Systems 12 (1) 487 (2013)
https://doi.org/10.1137/120881968

Numerical Analysis of Panel Flutter on Inertial Manifolds With Delay

Guanhua Mei, Jiazhong Zhang and Zhuopu Wang
Journal of Computational and Nonlinear Dynamics 8 (2) (2013)
https://doi.org/10.1115/1.4006948

A two-level method in time and space for solving the Navier–Stokes equations based on Newton iteration

Qingfang Liu, Yanren Hou and Qingchang Liu
Computers & Mathematics with Applications 64 (11) 3569 (2012)
https://doi.org/10.1016/j.camwa.2012.09.007

Reduced-Order Modelling for Flow Control

Gilead Tadmor, Oliver Lehmann, Bernd R. Noack and Marek Morzyński
CISM International Centre for Mechanical Sciences, Reduced-Order Modelling for Flow Control 528 151 (2011)
https://doi.org/10.1007/978-3-7091-0758-4_4

Galerkin and subspace decomposition methods in space and time for the Navier–Stokes equations

Yinnian He and Yanren Hou
Nonlinear Analysis: Theory, Methods & Applications 74 (10) 3218 (2011)
https://doi.org/10.1016/j.na.2011.01.036

A two-level finite element method for the Navier–Stokes equations based on a new projection

Qingfang Liu and Yanren Hou
Applied Mathematical Modelling 34 (2) 383 (2010)
https://doi.org/10.1016/j.apm.2009.04.019

A two-level correction method in space and time based on Crank–Nicolson scheme for Navier–Stokes equations

Qingfang Liu and Yanren Hou
International Journal of Computer Mathematics 87 (11) 2520 (2010)
https://doi.org/10.1080/00207160802684426

A postprocessing mixed finite element method for the Navier–Stokes equations

Qingfang Liu and Yanren Hou
International Journal of Computational Fluid Dynamics 23 (6) 461 (2009)
https://doi.org/10.1080/10618560903061329

A second order accuracy for a full discretized time-dependent Navier–Stokes equations by a two-grid scheme

Hyam Abboud, Vivette Girault and Toni Sayah
Numerische Mathematik 114 (2) 189 (2009)
https://doi.org/10.1007/s00211-009-0251-5

Incremental unknowns method based on the -scheme for time-dependent convection–diffusion equations

Lunji Song and Yujiang Wu
Mathematics and Computers in Simulation 79 (7) 2001 (2009)
https://doi.org/10.1016/j.matcom.2008.08.001

Postprocessing Fourier Galerkin Method for the Navier–Stokes Equations

Yanren Hou and Kaitai Li
SIAM Journal on Numerical Analysis 47 (3) 1909 (2009)
https://doi.org/10.1137/060675952

Attractors for nonautonomous two-dimensional space periodic Navier–Stokes equations

Dongshan Gong, Haitao Song and Chengkui Zhong
Journal of Mathematical Physics 50 (10) (2009)
https://doi.org/10.1063/1.3227652

Attractors for nonautonomous 2D Navier–Stokes equations with less regular symbols

Shan Ma, Chengkui Zhong and Haitao Song
Nonlinear Analysis: Theory, Methods & Applications 71 (9) 4215 (2009)
https://doi.org/10.1016/j.na.2009.02.107

Combination of standard Galerkin and subspace methods for the time‐dependent Navier‐Stokes equations with nonsmooth initial data

Yinnian He
Numerical Methods for Partial Differential Equations 25 (5) 1009 (2009)
https://doi.org/10.1002/num.20380

Reduced-Order Optimal Control Based on Approximate Inertial Manifolds for Nonlinear Dynamical Systems

Kazufumi Ito and Karl Kunisch
SIAM Journal on Numerical Analysis 46 (6) 2867 (2008)
https://doi.org/10.1137/060666421

The Postprocessed Mixed Finite-Element Method for the Navier–Stokes Equations: Refined Error Bounds

Javier de Frutos, Bosco García-Archilla and Julia Novo
SIAM Journal on Numerical Analysis 46 (1) 201 (2008)
https://doi.org/10.1137/06064458

Long time behavior of a singular perturbation of the viscous Cahn–Hilliard–Gurtin equation

Ahmed Bonfoh, Maurizio Grasselli and Alain Miranville
Mathematical Methods in the Applied Sciences 31 (6) 695 (2008)
https://doi.org/10.1002/mma.938

A two-grid finite difference method for the primitive equations of the ocean

T. Tachim Medjo and R. Temam
Nonlinear Analysis: Theory, Methods & Applications 69 (3) 1034 (2008)
https://doi.org/10.1016/j.na.2008.02.044

A fully discrete nonlinear Galerkin method for the 3D Navier–Stokes equations

J.‐L. Guermond and Serge Prudhomme
Numerical Methods for Partial Differential Equations 24 (3) 759 (2008)
https://doi.org/10.1002/num.20287

Explicit construction of attracting integral manifolds for a dissipative hyperbolic equation

A. Yu. Goritsky
Journal of Mathematical Sciences 143 (4) 3239 (2007)
https://doi.org/10.1007/s10958-007-0207-1

Flattening, squeezing and the existence of random attractors

Peter E Kloeden and José A Langa
Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 463 (2077) 163 (2007)
https://doi.org/10.1098/rspa.2006.1753

Postprocessing for Stochastic Parabolic Partial Differential Equations

Gabriel J. Lord and Tony Shardlow
SIAM Journal on Numerical Analysis 45 (2) 870 (2007)
https://doi.org/10.1137/050640138

Multi-level spectral Galerkin method for the Navier–Stokes equations, II: time discretization

Yinnian He and Kam-Moon Liu
Advances in Computational Mathematics 25 (4) 403 (2006)
https://doi.org/10.1007/s10444-004-7640-1

Tangent space correction method for the Galerkin approximation based on two-grid finite element

Yanren Hou and Kaitai Li
Applied Mathematics and Computation 175 (1) 413 (2006)
https://doi.org/10.1016/j.amc.2005.07.046

Nonlinear Galerkin mixed element methods for stationary incompressible magnetohydrodynamics

Zhen-dong Luo, Yun-kui Mao and Jiang Zhu
Applied Mathematics and Mechanics 27 (12) 1697 (2006)
https://doi.org/10.1007/s10483-006-1212-1

Asymptotic analysis of the primitive equations under the small depth assumption

Changbing Hu
Nonlinear Analysis: Theory, Methods & Applications 61 (3) 425 (2005)
https://doi.org/10.1016/j.na.2004.12.005

Stability and error analysis for a spectral Galerkin method for the Navier‐Stokes equations with H2 or H1 initial data

Yinnian He
Numerical Methods for Partial Differential Equations 21 (5) 875 (2005)
https://doi.org/10.1002/num.20065

Multi-level spectral galerkin method for the navier-stokes problem I : spatial discretization

Yinnian He, Kam-Moon Liu and Weiwei Sun
Numerische Mathematik 101 (3) 501 (2005)
https://doi.org/10.1007/s00211-005-0632-3

The Postprocessed Mixed Finite-Element Method for the Navier--Stokes Equations

Blanca Ayuso, Bosco García-Archilla and Julia Novo
SIAM Journal on Numerical Analysis 43 (3) 1091 (2005)
https://doi.org/10.1137/040602821

Asymptotic behavior and time discretization analysis for the non-stationary Navier-Stokes problem

Yinnian He and Kaitai Li
Numerische Mathematik 98 (4) 647 (2004)
https://doi.org/10.1007/s00211-004-0532-y

Uniform stability of spectral nonlinear Galerkin methods

Yinnian He, Kaitai Li and Chunshan Zhao
Numerical Methods for Partial Differential Equations 20 (5) 723 (2004)
https://doi.org/10.1002/num.20010

DPIV-driven flow simulation: a new computational paradigm

X. Ma, G. E. Karniadakis, H. Park and M. Gharib
Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences 459 (2031) 547 (2003)
https://doi.org/10.1098/rspa.2002.0981

The Postprocessing Galerkin and Nonlinear Galerkin Methods---A Truncation Analysis Point of View

Len G. Margolin, Edriss S. Titi and Shannon Wynne
SIAM Journal on Numerical Analysis 41 (2) 695 (2003)
https://doi.org/10.1137/S0036142901390500

A nonlinear galerkin mixed element method and a posteriori error estimator for the stationary navier-stokes equations

Luo Zhen-dong and Zhu Jiang
Applied Mathematics and Mechanics 23 (10) 1194 (2002)
https://doi.org/10.1007/BF02437668

Stabilized finite element approximation of transient incompressible flows using orthogonal subscales

Ramon Codina
Computer Methods in Applied Mechanics and Engineering 191 (39-40) 4295 (2002)
https://doi.org/10.1016/S0045-7825(02)00337-7