Articles citing this article

The Citing articles tool gives a list of articles citing the current article.
The citing articles come from EDP Sciences database, as well as other publishers participating in CrossRef Cited-by Linking Program. You can set up your personal account to receive an email alert each time this article is cited by a new article (see the menu on the right-hand side of the abstract page).

Cited article:

Global existence and temporal decay of large solutions for the Poisson–Nernst–Planck equations in low regularity spaces

Jihong Zhao and Xilan Liu
Mathematical Methods in the Applied Sciences 46 (2) 1667 (2023)
https://doi.org/10.1002/mma.8599

$$\text {L}^2$$-Hypocoercivity and Large Time Asymptotics of the Linearized Vlasov–Poisson–Fokker–Planck System

Lanoir Addala, Jean Dolbeault, Xingyu Li and M. Lazhar Tayeb
Journal of Statistical Physics 184 (1) (2021)
https://doi.org/10.1007/s10955-021-02784-4

Generalized Logarithmic Hardy–Littlewood–Sobolev Inequality

Jean Dolbeault and Xingyu Li
International Mathematics Research Notices 2021 (23) 17862 (2021)
https://doi.org/10.1093/imrn/rnz324

Regularity Criteria for the 3D Dissipative System Modeling Electro-Hydrodynamics

Jihong Zhao
Bulletin of the Malaysian Mathematical Sciences Society 42 (3) 1101 (2019)
https://doi.org/10.1007/s40840-017-0537-1

Large-Time Behavior of Solutions to Vlasov-Poisson-Fokker-Planck Equations: From Evanescent Collisions to Diffusive Limit

Maxime Herda and L. Miguel Rodrigues
Journal of Statistical Physics 170 (5) 895 (2018)
https://doi.org/10.1007/s10955-018-1963-7

The same class of stationary solutions to some multidimensional kinetic systems with extensive background density

Limei Zhu
Journal of Mathematical Analysis and Applications 466 (1) 1 (2018)
https://doi.org/10.1016/j.jmaa.2018.03.051

A VARIATIONAL APPROACH FOR A BI-NON-LOCAL ELLIPTIC PROBLEM INVOLVING THE p(x)-LAPLACIAN AND NON-LINEARITY WITH NON-STANDARD GROWTH

FRANCISCO JULIO S. A. CORRÊA and AUGUSTO CÉSAR DOS REIS COSTA
Glasgow Mathematical Journal 56 (2) 317 (2014)
https://doi.org/10.1017/S001708951300027X

Regularizing and decay rate estimates for solutions to the Cauchy problem of the Debye–Hückel system

Jihong Zhao, Qiao Liu and Shangbin Cui
Nonlinear Differential Equations and Applications NoDEA 19 (1) 1 (2012)
https://doi.org/10.1007/s00030-011-0115-4

Non-Existence and Uniqueness Results for Supercritical Semilinear Elliptic Equations

Jean Dolbeault and Robert Stańczy
Annales Henri Poincaré 10 (7) 1311 (2010)
https://doi.org/10.1007/s00023-009-0016-9

The 2D constrained Navier–Stokes equation and intermediate asymptotics

E Caglioti, M Pulvirenti and F Rousset
Journal of Physics A: Mathematical and Theoretical 41 (34) 344001 (2008)
https://doi.org/10.1088/1751-8113/41/34/344001

LONG TIME ASYMPTOTICS FOR THE SEMICONDUCTOR VLASOV–POISSON–BOLTZMANN EQUATIONS

A. CARPIO, E. CEBRIAN and F. J. MUSTIELES
Mathematical Models and Methods in Applied Sciences 11 (09) 1631 (2001)
https://doi.org/10.1142/S0218202501001513

Free energy and solutions of the Vlasov-Poisson-Fokker-Planck system: external potential and confinement (Large time behavior and steady states)

J. Dolbeault
Journal de Mathématiques Pures et Appliquées 78 (2) 121 (1999)
https://doi.org/10.1016/S0021-7824(01)80006-4

On a nonlocal elliptic equation with decreasing nonlinearity arising in plasma physics and heat conduction

J.A Carrillo
Nonlinear Analysis: Theory, Methods & Applications 32 (1) 97 (1998)
https://doi.org/10.1016/S0362-546X(97)00455-0

Исследование точек бифуркации и нетривиальных ветвей решений стационарной системы Власова - Максвелла

Nikolay Aleksandrovich Sidorov, Николай Александрович Сидоров, Александр Владимирович Синицын and Aleksandr Vladimirovich Sinitsyn
Математические заметки 62 (2) 268 (1997)
https://doi.org/10.4213/mzm1610

Analysis of bifurcation points and nontrivial branches of solutions to the stationary Vlasov-Maxwell system

N. A. Sidorov and A. V. Sinitsyn
Mathematical Notes 62 (2) 223 (1997)
https://doi.org/10.1007/BF02355910

Asymptotic Behavior of an Initial-Boundary Value Problem for the Vlasov--Poisson--Fokker--Planck System

J. Soler, J. A. Carrillo and L. L. Bonilla
SIAM Journal on Applied Mathematics 57 (5) 1343 (1997)
https://doi.org/10.1137/S0036139995291544

On bifurcation of solutions to the Vlasov-Maxwell system

N. A. Sidorov and A. V. Sinitsyn
Siberian Mathematical Journal 37 (6) 1199 (1996)
https://doi.org/10.1007/BF02106745

A special class of stationary flows for two-dimensional euler equations: A statistical mechanics description. Part II

E. Caglioti, P. L. Lions, C. Marchioro and M. Pulvirenti
Communications in Mathematical Physics 174 (2) 229 (1995)
https://doi.org/10.1007/BF02099602

A special class of stationary flows for two-dimensional Euler equations: A statistical mechanics description

E. Caglioti, P. L. Lions, C. Marchioro and M. Pulvirenti
Communications in Mathematical Physics 143 (3) 501 (1992)
https://doi.org/10.1007/BF02099262

Steady-state solutions of the Vlasov-Maxwell system and their stability

Y. Markov, G. Rudykh, N. Sidorov, A. Sinitsyn and D. Tolstonogov
Acta Applicandae Mathematicae 28 (3) 253 (1992)
https://doi.org/10.1007/BF00047089

On long time asymptotics of the vlasov—poisson—boltzmann equation

L. Desvillettes and J. Dolbeault
Communications in Partial Differential Equations 16 (2-3) 451 (1991)
https://doi.org/10.1080/03605309108820765