The Citing articles tool gives a list of articles citing the current article. The citing articles come from EDP Sciences database, as well as other publishers participating in CrossRef Cited-by Linking Program . You can set up your personal account to receive an email alert each time this article is cited by a new article (see the menu on the right-hand side of the abstract page).
Cited article:
D. Gogny , P. L. Lions
ESAIM: M2AN, 23 1 (1989) 137-153
Published online: 2017-01-31
This article has been cited by the following article(s):
25 articles
Global existence and temporal decay of large solutions for the Poisson–Nernst–Planck equations in low regularity spaces
Jihong Zhao and Xilan Liu Mathematical Methods in the Applied Sciences 46 (2) 1667 (2023) https://doi.org/10.1002/mma.8599
$$\text {L}^2$$-Hypocoercivity and Large Time Asymptotics of the Linearized Vlasov–Poisson–Fokker–Planck System
Lanoir Addala, Jean Dolbeault, Xingyu Li and M. Lazhar Tayeb Journal of Statistical Physics 184 (1) (2021) https://doi.org/10.1007/s10955-021-02784-4
Generalized Logarithmic Hardy–Littlewood–Sobolev Inequality
Jean Dolbeault and Xingyu Li International Mathematics Research Notices 2021 (23) 17862 (2021) https://doi.org/10.1093/imrn/rnz324
Regularity Criteria for the 3D Dissipative System Modeling Electro-Hydrodynamics
Jihong Zhao Bulletin of the Malaysian Mathematical Sciences Society 42 (3) 1101 (2019) https://doi.org/10.1007/s40840-017-0537-1
Large-Time Behavior of Solutions to Vlasov-Poisson-Fokker-Planck Equations: From Evanescent Collisions to Diffusive Limit
Maxime Herda and L. Miguel Rodrigues Journal of Statistical Physics 170 (5) 895 (2018) https://doi.org/10.1007/s10955-018-1963-7
Existence and uniqueness for some nonlocal elliptic problem
Fei Liang and Huan Qiao Applicable Analysis 97 (15) 2618 (2018) https://doi.org/10.1080/00036811.2017.1382687
The same class of stationary solutions to some multidimensional kinetic systems with extensive background density
Limei Zhu Journal of Mathematical Analysis and Applications 466 (1) 1 (2018) https://doi.org/10.1016/j.jmaa.2018.03.051
A VARIATIONAL APPROACH FOR A BI-NON-LOCAL ELLIPTIC PROBLEM INVOLVING THE p(x)-LAPLACIAN AND NON-LINEARITY WITH NON-STANDARD GROWTH
FRANCISCO JULIO S. A. CORRÊA and AUGUSTO CÉSAR DOS REIS COSTA Glasgow Mathematical Journal 56 (2) 317 (2014) https://doi.org/10.1017/S001708951300027X
Regularizing and decay rate estimates for solutions to the Cauchy problem of the Debye–Hückel system
Jihong Zhao, Qiao Liu and Shangbin Cui Nonlinear Differential Equations and Applications NoDEA 19 (1) 1 (2012) https://doi.org/10.1007/s00030-011-0115-4
Kinetic Boltzmann, Vlasov and Related Equations
Kinetic Boltzmann, Vlasov and Related Equations 289 (2011) https://doi.org/10.1016/B978-0-12-387779-6.00017-X
Remarks on the local existence of solutions to the Debye system
Jihong Zhao and Shangbin Cui Journal of Mathematical Analysis and Applications 383 (2) 337 (2011) https://doi.org/10.1016/j.jmaa.2011.05.027
Non-Existence and Uniqueness Results for Supercritical Semilinear Elliptic Equations
Jean Dolbeault and Robert Stańczy Annales Henri Poincaré 10 (7) 1311 (2010) https://doi.org/10.1007/s00023-009-0016-9
On a Constrained 2-D Navier-Stokes Equation
E. Caglioti, M. Pulvirenti and F. Rousset Communications in Mathematical Physics 290 (2) 651 (2009) https://doi.org/10.1007/s00220-008-0720-1
The 2D constrained Navier–Stokes equation and intermediate asymptotics
E Caglioti, M Pulvirenti and F Rousset Journal of Physics A: Mathematical and Theoretical 41 (34) 344001 (2008) https://doi.org/10.1088/1751-8113/41/34/344001
LONG TIME ASYMPTOTICS FOR THE SEMICONDUCTOR VLASOV–POISSON–BOLTZMANN EQUATIONS
A. CARPIO, E. CEBRIAN and F. J. MUSTIELES Mathematical Models and Methods in Applied Sciences 11 (09) 1631 (2001) https://doi.org/10.1142/S0218202501001513
Free energy and solutions of the Vlasov-Poisson-Fokker-Planck system: external potential and confinement (Large time behavior and steady states)
J. Dolbeault Journal de Mathématiques Pures et Appliquées 78 (2) 121 (1999) https://doi.org/10.1016/S0021-7824(01)80006-4
On a nonlocal elliptic equation with decreasing nonlinearity arising in plasma physics and heat conduction
J.A Carrillo Nonlinear Analysis: Theory, Methods & Applications 32 (1) 97 (1998) https://doi.org/10.1016/S0362-546X(97)00455-0
Исследование точек бифуркации и нетривиальных ветвей решений стационарной системы Власова - Максвелла
Nikolay Aleksandrovich Sidorov, Николай Александрович Сидоров, Александр Владимирович Синицын and Aleksandr Vladimirovich Sinitsyn Математические заметки 62 (2) 268 (1997) https://doi.org/10.4213/mzm1610
Analysis of bifurcation points and nontrivial branches of solutions to the stationary Vlasov-Maxwell system
N. A. Sidorov and A. V. Sinitsyn Mathematical Notes 62 (2) 223 (1997) https://doi.org/10.1007/BF02355910
Asymptotic Behavior of an Initial-Boundary Value Problem for the Vlasov--Poisson--Fokker--Planck System
J. Soler, J. A. Carrillo and L. L. Bonilla SIAM Journal on Applied Mathematics 57 (5) 1343 (1997) https://doi.org/10.1137/S0036139995291544
On bifurcation of solutions to the Vlasov-Maxwell system
N. A. Sidorov and A. V. Sinitsyn Siberian Mathematical Journal 37 (6) 1199 (1996) https://doi.org/10.1007/BF02106745
A special class of stationary flows for two-dimensional euler equations: A statistical mechanics description. Part II
E. Caglioti, P. L. Lions, C. Marchioro and M. Pulvirenti Communications in Mathematical Physics 174 (2) 229 (1995) https://doi.org/10.1007/BF02099602
A special class of stationary flows for two-dimensional Euler equations: A statistical mechanics description
E. Caglioti, P. L. Lions, C. Marchioro and M. Pulvirenti Communications in Mathematical Physics 143 (3) 501 (1992) https://doi.org/10.1007/BF02099262
Steady-state solutions of the Vlasov-Maxwell system and their stability
Y. Markov, G. Rudykh, N. Sidorov, A. Sinitsyn and D. Tolstonogov Acta Applicandae Mathematicae 28 (3) 253 (1992) https://doi.org/10.1007/BF00047089
On long time asymptotics of the vlasov—poisson—boltzmann equation
L. Desvillettes and J. Dolbeault Communications in Partial Differential Equations 16 (2-3) 451 (1991) https://doi.org/10.1080/03605309108820765