Articles citing this article

The Citing articles tool gives a list of articles citing the current article.
The citing articles come from EDP Sciences database, as well as other publishers participating in CrossRef Cited-by Linking Program. You can set up your personal account to receive an email alert each time this article is cited by a new article (see the menu on the right-hand side of the abstract page).

Cited article:

A posteriori error analysis of space-time discontinuous Galerkin methods for the ε-stochastic Allen–Cahn equation

Dimitra C Antonopoulou, Bernard Egwu and Yubin Yan
IMA Journal of Numerical Analysis 44 (3) 1862 (2024)
https://doi.org/10.1093/imanum/drad052

A Posteriori Error Estimators for the Quasi-Newtonian Stokes Problem with a General Boundary Condition

Omar El Moutea, Lahcen El Ouadefli, Abdeslam El Akkad, et al.
Mathematics 11 (8) 1943 (2023)
https://doi.org/10.3390/math11081943

The Convergence Analysis of Semi- and Fully-Discrete Projection-Decoupling Schemes for the Generalized Newtonian Models

Guanyu Zhou
Journal of Scientific Computing 91 (2) (2022)
https://doi.org/10.1007/s10915-022-01828-5

A posteriori analysis for space-time, discontinuous in time Galerkin approximations for parabolic equations in a variable domain

Dimitra Antonopoulou and Michael Plexousakis
ESAIM: Mathematical Modelling and Numerical Analysis 53 (2) 523 (2019)
https://doi.org/10.1051/m2an/2018059

COULOMB FRICTION AND OTHER SLIDING LAWS IN A HIGHER-ORDER GLACIER FLOW MODEL

CHRISTIAN SCHOOF
Mathematical Models and Methods in Applied Sciences 20 (01) 157 (2010)
https://doi.org/10.1142/S0218202510004180

A Posteriori Error Estimates for Finite Element Approximation of Parabolic p-Laplacian

Carsten Carstensen, Wenbin Liu and Ningning Yan
SIAM Journal on Numerical Analysis 43 (6) 2294 (2006)
https://doi.org/10.1137/040611008

Modelling error and constitutive relations in simulation of flow and transport

Graham F. Carey, William Barth, Juliette A. Woods, Benjamin S. Kirk, Michael L. Anderson, Sum Chow and Wolfgang Bangerth
International Journal for Numerical Methods in Fluids 46 (12) 1211 (2004)
https://doi.org/10.1002/fld.797

Numerical approximation of generalized Newtonian fluids using Powell–Sabin–Heindl elements: I. theoretical estimates

S.‐S. Chow and G. F. Carey
International Journal for Numerical Methods in Fluids 41 (10) 1085 (2003)
https://doi.org/10.1002/fld.480

Numerical study of the effectivity index for an anisotropic error indicator based on Zienkiewicz–Zhu error estimator

M. Picasso
Communications in Numerical Methods in Engineering 19 (1) 13 (2003)
https://doi.org/10.1002/cnm.546

A posteriori error estimates and adaptive finite elements for a nonlinear parabolic problem related to solidification

O. Krüger, M. Picasso and J.-F. Scheid
Computer Methods in Applied Mechanics and Engineering 192 (5-6) 535 (2003)
https://doi.org/10.1016/S0045-7825(02)00550-9

Two-level finite element discretization of viscoelastic fluid flow

Anastasios Liakos and Hyesuk Lee
Computer Methods in Applied Mechanics and Engineering 192 (44-46) 4965 (2003)
https://doi.org/10.1016/S0045-7825(03)00443-2

An Anisotropic Error Indicator Based on Zienkiewicz--Zhu Error Estimator: Application to Elliptic and Parabolic Problems

M. Picasso
SIAM Journal on Scientific Computing 24 (4) 1328 (2003)
https://doi.org/10.1137/S1064827501398578

On Quasi-Norm Interpolation Error Estimation And A Posteriori Error Estimates for p-Laplacian

Wenbin Liu and Ningning Yan
SIAM Journal on Numerical Analysis 40 (5) 1870 (2002)
https://doi.org/10.1137/S0036142901393589

Adaptive Finite Element Approximation for Distributed Elliptic Optimal Control Problems

Ruo Li, Wenbin Liu, Heping Ma and Tao Tang
SIAM Journal on Control and Optimization 41 (5) 1321 (2002)
https://doi.org/10.1137/S0363012901389342

Existence,a priorianda posteriorierror estimates for a nonlinear three-field problem arising from Oldroyd-B viscoelastic flows

Marco Picasso and Jacques Rappaz
ESAIM: Mathematical Modelling and Numerical Analysis 35 (5) 879 (2001)
https://doi.org/10.1051/m2an:2001140

Advances in Adaptive Computational Methods in Mechanics

T. Coupez, L. Fourment and J.L. Chenot
Studies in Applied Mechanics, Advances in Adaptive Computational Methods in Mechanics 47 365 (1998)
https://doi.org/10.1016/S0922-5382(98)80021-4

A posteriori error estimates for nonlinear problems. 𝐿^{𝑟}(0,𝑇;𝐿^{𝜌}(Ω))-error estimates for finite element discretizations of parabolic equations

R. Verfürth
Mathematics of Computation 67 (224) 1335 (1998)
https://doi.org/10.1090/S0025-5718-98-01011-4

A Posteriori Error Estimate of Approximate Solutions to a Special Nonlinear Elliptic Boundary Value Problem

Juraj Weisz
ZAMM - Journal of Applied Mathematics and Mechanics / Zeitschrift für Angewandte Mathematik und Mechanik 75 (1) 79 (1995)
https://doi.org/10.1002/zamm.19950750122

An adaptive finite element algorithm for a two-dimensional stationary Stefan-like problem

M. Picasso
Computer Methods in Applied Mechanics and Engineering 124 (3) 213 (1995)
https://doi.org/10.1016/0045-7825(95)00793-Z

A model study of element residual estimators for linear elliptic problems: The quality of the estimators in the interior of meshes of triangles and quadrilaterals

I. Babuška, T. Strouboulis, C.S. Upadhyay and S.K. Gangaraj
Computers & Structures 57 (6) 1009 (1995)
https://doi.org/10.1016/0045-7949(95)00075-R

A model study of the quality of a posteriori error estimators for linear elliptic problems. Error estimation in the interior of patchwise uniform grids of triangles

I Babuška, T Strouboulis and C.S Upadhyay
Computer Methods in Applied Mechanics and Engineering 114 (3-4) 307 (1994)
https://doi.org/10.1016/0045-7825(94)90177-5

Validation of a posteriori error estimators by numerical approach

I. Babuška, T. Strouboulis, C. S. Upadhyay, S. K. Gangaraj and K. Copps
International Journal for Numerical Methods in Engineering 37 (7) 1073 (1994)
https://doi.org/10.1002/nme.1620370702

Sur l'approximation numérique des écoulements quasi-newtoniens dont la viscosité suit la loi puissance ou la loi de Carreau

D. Sandri
ESAIM: Mathematical Modelling and Numerical Analysis 27 (2) 131 (1993)
https://doi.org/10.1051/m2an/1993270201311

Finite element approximation of viscoelastic fluid flow: Existence of approximate solutions and error bounds

J. Baranger and D. Sandri
Numerische Mathematik 63 (1) 13 (1992)
https://doi.org/10.1007/BF01385845