The Citing articles tool gives a list of articles citing the current article. The citing articles come from EDP Sciences database, as well as other publishers participating in CrossRef Cited-by Linking Program . You can set up your personal account to receive an email alert each time this article is cited by a new article (see the menu on the right-hand side of the abstract page).
Cited article:
M. D. Gunzburger , L. S. Hou , Th. P. Svobodny
ESAIM: M2AN, 25 6 (1991) 711-748
Published online: 2017-01-31
This article has been cited by the following article(s):
111 articles | Pages:
A two level finite element method for Stokes constrained Dirichlet boundary control problem
Thirupathi Gudi and Ramesh Ch. Sau Computers & Mathematics with Applications 129 126 (2023) https://doi.org/10.1016/j.camwa.2022.11.026
Finite element approximation to optimal Dirichlet boundary control problem: A priori and a posteriori error estimates
Shaohong Du and Xiaoxia He Computers & Mathematics with Applications 131 14 (2023) https://doi.org/10.1016/j.camwa.2022.11.022
Pressure-Robustness in the Context of Optimal Control
Christian Merdon and Winnifried Wollner SIAM Journal on Control and Optimization 61 (1) 342 (2023) https://doi.org/10.1137/22M1482603
A monolithic optimal control method for displacement tracking of Cosserat rod with application to reconstruction of C. elegans locomotion
Yongxing Wang, Thomas Ranner, Thomas P. Ilett, Yan Xia and Netta Cohen Computational Mechanics 71 (3) 409 (2023) https://doi.org/10.1007/s00466-022-02247-x
Unified discontinuous Galerkin finite element methods for second order Dirichlet boundary control problem
Divay Garg and Kamana Porwal Applied Numerical Mathematics 185 336 (2023) https://doi.org/10.1016/j.apnum.2022.12.001
Stochastic Collocation Method for Stochastic Optimal Boundary Control of the Navier–Stokes Equations
Wenju Zhao and Max Gunzburger Applied Mathematics & Optimization 87 (1) (2023) https://doi.org/10.1007/s00245-022-09910-y
Error Estimates for Finite Element Approximation of Dirichlet Boundary Control for Stokes Equations in $$\mathbf{L} ^2(\Gamma )$$
Kaiye Zhou and Wei Gong Journal of Scientific Computing 91 (2) (2022) https://doi.org/10.1007/s10915-022-01831-w
Alternating direction based method for optimal control problem constrained by Stokes equation
Yu Gao, Jingzhi Li, Yongcun Song, Chao Wang and Kai Zhang Journal of Inverse and Ill-posed Problems 30 (1) 81 (2022) https://doi.org/10.1515/jiip-2020-0101
Analysis and Approximations of Dirichlet Boundary Control of Stokes Flows in the Energy Space
Wei Gong, Mariano Mateos, John Singler and Yangwen Zhang SIAM Journal on Numerical Analysis 60 (1) 450 (2022) https://doi.org/10.1137/21M1406799
A monolithic one-velocity-field optimal control formulation for fluid–structure interaction problems with large solid deformation
Yongxing Wang Journal of Fluids and Structures 111 103577 (2022) https://doi.org/10.1016/j.jfluidstructs.2022.103577
Optimal Control of Partial Differential Equations
Andrea Manzoni, Alfio Quarteroni and Sandro Salsa Applied Mathematical Sciences, Optimal Control of Partial Differential Equations 207 103 (2021) https://doi.org/10.1007/978-3-030-77226-0_5
Adaptive Finite Element Method for Dirichlet Boundary Control of Elliptic Partial Differential Equations
Shaohong Du and Zhiqiang Cai Journal of Scientific Computing 89 (2) (2021) https://doi.org/10.1007/s10915-021-01644-3
Optimal Control of Partial Differential Equations
Andrea Manzoni, Alfio Quarteroni and Sandro Salsa Applied Mathematical Sciences, Optimal Control of Partial Differential Equations 207 325 (2021) https://doi.org/10.1007/978-3-030-77226-0_10
Morley FEM for a Distributed Optimal Control Problem Governed by the von Kármán Equations
Sudipto Chowdhury, Neela Nataraj and Devika Shylaja Computational Methods in Applied Mathematics 21 (1) 233 (2021) https://doi.org/10.1515/cmam-2020-0030
A superconvergent hybridizable discontinuous Galerkin method for Dirichlet boundary control of elliptic PDEs
Weiwei Hu, Jiguang Shen, John R. Singler, Yangwen Zhang and Xiaobo Zheng Numerische Mathematik 144 (2) 375 (2020) https://doi.org/10.1007/s00211-019-01090-2
Finite element analysis of the constrained Dirichlet boundary control problem governed by the diffusion problem
Thirupathi Gudi and Ramesh Ch. Sau ESAIM: Control, Optimisation and Calculus of Variations 26 78 (2020) https://doi.org/10.1051/cocv/2019068
Error Analysis of the SAV-MAC Scheme for the Navier--Stokes Equations
Xiaoli Li and Jie Shen SIAM Journal on Numerical Analysis 58 (5) 2465 (2020) https://doi.org/10.1137/19M1288267
Penalization of Dirichlet Boundary Control for Nonstationary Magneto-Hydrodynamics
Sivaguru S. Ravindran SIAM Journal on Control and Optimization 58 (4) 2354 (2020) https://doi.org/10.1137/18M1233716
Analysis of a hybridizable discontinuous Galerkin scheme for the tangential control of the Stokes system
Wei Gong, Weiwei Hu, Mariano Mateos, John R. Singler and Yangwen Zhang ESAIM: Mathematical Modelling and Numerical Analysis 54 (6) 2229 (2020) https://doi.org/10.1051/m2an/2020015
An HDG Method for Dirichlet Boundary Control of Convection Dominated Diffusion PDEs
Gang Chen, John R. Singler and Yangwen Zhang SIAM Journal on Numerical Analysis 57 (4) 1919 (2019) https://doi.org/10.1137/18M1208708
An Error Analysis of Discontinuous Finite Element Methods for the Optimal Control Problems Governed by Stokes Equation
Asha K. Dond, Thirupathi Gudi and Ramesh C.H. Sau Numerical Functional Analysis and Optimization 40 (4) 421 (2019) https://doi.org/10.1080/01630563.2018.1538158
Control Problem for a Magneto-Micropolar Flow with Mixed Boundary Conditions for the Velocity Field
Exequiel Mallea-Zepeda and Elva Ortega-Torres Journal of Dynamical and Control Systems 25 (4) 599 (2019) https://doi.org/10.1007/s10883-018-9427-6
A saddle point approach to an optimal boundary control problem for steady Navier-Stokes equations
Andrea Manzoni, Alfio Quarteroni and Sandro Salsa Mathematics in Engineering 1 (2) 252 (2019) https://doi.org/10.3934/mine.2019.2.252
A Class of Embedded DG Methods for Dirichlet Boundary Control of Convection Diffusion PDEs
Gang Chen, Guosheng Fu, John R. Singler and Yangwen Zhang Journal of Scientific Computing 81 (2) 623 (2019) https://doi.org/10.1007/s10915-019-01043-9
A New HDG Method for Dirichlet Boundary Control of Convection Diffusion PDEs II: Low Regularity
Wei Gong, Weiwei Hu, Mariano Mateos, et al. SIAM Journal on Numerical Analysis 56 (4) 2262 (2018) https://doi.org/10.1137/17M1152103
Injection-Suction Control for Two-Dimensional Navier--Stokes Equations with Slippage
Nikolai Chemetov and Fernanda Cipriano SIAM Journal on Control and Optimization 56 (2) 1253 (2018) https://doi.org/10.1137/17M1121196
Error estimates for the numerical approximation of a distributed optimal control problem governed by the von Kármán equations
Gouranga Mallik, Neela Nataraj and Jean-Pierre Raymond ESAIM: Mathematical Modelling and Numerical Analysis 52 (3) 1137 (2018) https://doi.org/10.1051/m2an/2018023
Finite element approximation of Dirichlet control using boundary penalty method for unsteady Navier–Stokes equations
Sivaguru S. Ravindran ESAIM: Mathematical Modelling and Numerical Analysis 51 (3) 825 (2017) https://doi.org/10.1051/m2an/2016040
A C0 interior penalty method for the Dirichlet control problem governed by biharmonic operator
Sudipto Chowdhury and Thirupathi Gudi Journal of Computational and Applied Mathematics 317 290 (2017) https://doi.org/10.1016/j.cam.2016.12.005
Optimization and Differentiation
Monographs and Research Notes in Mathematics, Optimization and Differentiation 473 (2017) https://doi.org/10.1201/9781315152448-18
Enhancement of flow measurements using fluid-dynamic constraints
H. Egger, T. Seitz and C. Tropea Journal of Computational Physics 344 558 (2017) https://doi.org/10.1016/j.jcp.2017.04.080
Optimal control problems for the Navier–Stokes system coupled with the k-ω turbulence model
Sandro Manservisi and Filippo Menghini Computers & Mathematics with Applications 71 (11) 2389 (2016) https://doi.org/10.1016/j.camwa.2015.10.003
Impulse and Sampled-Data Optimal Control of Heat Equations, and Error Estimates
Emmanuel Trélat, Lijuan Wang and Yubiao Zhang SIAM Journal on Control and Optimization 54 (5) 2787 (2016) https://doi.org/10.1137/15M1040670
THE h × p FINITE ELEMENT METHOD FOR OPTIMAL CONTROL PROBLEMS CONSTRAINED BY STOCHASTIC ELLIPTIC PDES
HYUNG-CHUN LEE and GWOON LEE Journal of the Korea Society for Industrial and Applied Mathematics 19 (4) 387 (2015) https://doi.org/10.12941/jksiam.2015.19.387
An energy space finite element approach for elliptic Dirichlet boundary control problems
G. Of, T. X. Phan and O. Steinbach Numerische Mathematik 129 (4) 723 (2015) https://doi.org/10.1007/s00211-014-0653-x
A FrameWork for the Error Analysis of Discontinuous Finite Element Methods for Elliptic Optimal Control Problems and Applications toC0IP Methods
Sudipto Chowdhury, Thirupathi Gudi and A. K. Nandakumaran Numerical Functional Analysis and Optimization 36 (11) 1388 (2015) https://doi.org/10.1080/01630563.2015.1068182
A mixed multiscale finite element method for convex optimal control problems with oscillating coefficients
Yanping Chen, Yunqing Huang, Wenbin Liu and Ningning Yan Computers & Mathematics with Applications 70 (4) 297 (2015) https://doi.org/10.1016/j.camwa.2015.03.020
Reduced basis approximation of parametrized optimal flow control problems for the Stokes equations
Federico Negri, Andrea Manzoni and Gianluigi Rozza Computers & Mathematics with Applications 69 (4) 319 (2015) https://doi.org/10.1016/j.camwa.2014.12.010
Smooth and robust solutions for Dirichlet boundary control of fluid–solid conjugate heat transfer problems
Yan Yan and David E. Keyes Journal of Computational Physics 281 759 (2015) https://doi.org/10.1016/j.jcp.2014.10.049
A posteriorierror estimates for mixed finite element approximation of nonlinear quadratic optimal control problems
Yanping Chen, Zuliang Lu and Min Fu Optimization Methods and Software 28 (1) 37 (2013) https://doi.org/10.1080/10556788.2011.582500
A Stochastic Galerkin Method for Stochastic Control Problems
Hyung-Chun Lee and Jangwoon Lee Communications in Computational Physics 14 (01) 77 (2013) https://doi.org/10.4208/cicp.241011.150612a
Stability estimates for the solutions of control problems for the stationary magnetohydrodynamic equations
G. V. Alekseev and R. V. Brizitskii Differential Equations 48 (3) 397 (2012) https://doi.org/10.1134/S0012266112030111
Symmetric error estimates for discontinuous Galerkin
approximations for an optimal control problem associated to
semilinear parabolic PDE's
Konstantinos Chrysafinos and Efthimios N. Karatzas Discrete & Continuous Dynamical Systems - B 17 (5) 1473 (2012) https://doi.org/10.3934/dcdsb.2012.17.1473
Haijian Yang and Xiao-Chuan Cai 1387 (2012) https://doi.org/10.1109/IPDPSW.2012.176
A Variational Data Assimilation Procedure for the Incompressible Navier-Stokes Equations in Hemodynamics
Marta D’Elia, Mauro Perego and Alessandro Veneziani Journal of Scientific Computing 52 (2) 340 (2012) https://doi.org/10.1007/s10915-011-9547-6
Error Estimates of Stochastic Optimal Neumann Boundary Control Problems
Max D. Gunzburger, Hyung-Chun Lee and Jangwoon Lee SIAM Journal on Numerical Analysis 49 (4) 1532 (2011) https://doi.org/10.1137/100801731
Finite element approximations of stochastic optimal control problems constrained by stochastic elliptic PDEs
L.S. Hou, J. Lee and H. Manouzi Journal of Mathematical Analysis and Applications 384 (1) 87 (2011) https://doi.org/10.1016/j.jmaa.2010.07.036
Optimal control of the Stokes equations: conforming and non-conforming finite element methods under reduced regularity
Serge Nicaise and Dieter Sirch Computational Optimization and Applications 49 (3) 567 (2011) https://doi.org/10.1007/s10589-009-9305-y
Convergence of discontinuous Galerkin approximations of an optimal control problem associated to semilinear parabolic PDE's
Konstantinos Chrysafinos ESAIM: Mathematical Modelling and Numerical Analysis 44 (1) 189 (2010) https://doi.org/10.1051/m2an/2009046
A Posteriori Error Estimates of Mixed Methods for Parabolic Optimal Control Problems
Yanping Chen, Lingli Liu and Zuliang Lu Numerical Functional Analysis and Optimization 31 (10) 1135 (2010) https://doi.org/10.1080/01630563.2010.492046
Active Flow Control II
Christian John, Bernd R. Noack, Michael Schlegel, Fredi Tröltzsch and Daniel Wachsmuth Notes on Numerical Fluid Mechanics and Multidisciplinary Design, Active Flow Control II 108 405 (2010) https://doi.org/10.1007/978-3-642-11735-0_26
On the uniqueness and stability of solutions of extremal problems for the stationary Navier-Stokes equations
G. V. Alekseev and R. V. Brizitskii Differential Equations 46 (1) 70 (2010) https://doi.org/10.1134/S0012266110010088
Boundary element methods for Dirichlet boundary control problems
Günther Of, Thanh Xuan Phan and Olaf Steinbach Mathematical Methods in the Applied Sciences 33 (18) 2187 (2010) https://doi.org/10.1002/mma.1356
Optimal control problems for the two dimensional Rayleigh—Bénard type convection by a gradient method
Hyung -Chun Lee Japan Journal of Industrial and Applied Mathematics 26 (1) 93 (2009) https://doi.org/10.1007/BF03167547
New Directions in Mathematical Fluid Mechanics
A. V. Fursikov and R. Rannacher New Directions in Mathematical Fluid Mechanics 193 (2009) https://doi.org/10.1007/978-3-0346-0152-8_11
Analysis and finite element approximations for distributed optimal control problems for implicit parabolic equations
Konstantinos Chrysafinos Journal of Computational and Applied Mathematics 231 (1) 327 (2009) https://doi.org/10.1016/j.cam.2009.02.092
Optimal Dirichlet Boundary Control of Stationary Navier–Stokes Equations with State Constraint
C. John and D. Wachsmuth Numerical Functional Analysis and Optimization 30 (11-12) 1309 (2009) https://doi.org/10.1080/01630560903499001
Finite Element Approximation of Elliptic Dirichlet Optimal Control Problems
B. Vexler Numerical Functional Analysis and Optimization 28 (7-8) 957 (2007) https://doi.org/10.1080/01630560701493305
Error Estimates for the Numerical Approximation of a Distributed Control Problem for the Steady-State Navier–Stokes Equations
Eduardo Casas, Mariano Mateos and Jean-Pierre Raymond SIAM Journal on Control and Optimization 46 (3) 952 (2007) https://doi.org/10.1137/060649999
Constrained Dirichlet Boundary Control in $L^2$ for a Class of Evolution Equations
K. Kunisch and B. Vexler SIAM Journal on Control and Optimization 46 (5) 1726 (2007) https://doi.org/10.1137/060670110
Semidiscrete approximations of optimal Robin boundary control problems constrained by semilinear parabolic PDE
K. Chrysafinos, M.D. Gunzburger and L.S. Hou Journal of Mathematical Analysis and Applications 323 (2) 891 (2006) https://doi.org/10.1016/j.jmaa.2005.10.053
Primal–dual active set method for control constrained optimal control of the Stokes equations
J. C. De Los Reyes Optimization Methods and Software 21 (2) 267 (2006) https://doi.org/10.1080/10556780500140052
Error Estimates for the Numerical Approximation of Dirichlet Boundary Control for Semilinear Elliptic Equations
Eduardo Casas and Jean‐Pierre Raymond SIAM Journal on Control and Optimization 45 (5) 1586 (2006) https://doi.org/10.1137/050626600
A computational multilevel approach for solving 2D Navier–Stokes equations over non-matching grids
E. Aulisa, S. Manservisi and P. Seshaiyer Computer Methods in Applied Mechanics and Engineering 195 (33-36) 4604 (2006) https://doi.org/10.1016/j.cma.2005.10.011
Robust Optimization-Directed Design
E. Aulisa and S. Manservisi Nonconvex Optimization and Its Applications, Robust Optimization-Directed Design 81 3 (2006) https://doi.org/10.1007/0-387-28654-3_1
Optimal Control of the Stokes Equations: A Priori Error Analysis for Finite Element Discretization with Postprocessing
Arnd Rösch and Boris Vexler SIAM Journal on Numerical Analysis 44 (5) 1903 (2006) https://doi.org/10.1137/050637364
Moving Mesh Finite Element Methods for an Optimal Control Problem for the Advection-Diffusion Equation
Konstantinos Chrysafinos Journal of Scientific Computing 25 (3) 401 (2005) https://doi.org/10.1007/s10915-004-4804-6
Error Estimates for the Velocity Tracking Problem for Navier–Stokes Flows Based on the Artificial Compressibility Formulation
Konstantinos Chrysafinos Numerical Functional Analysis and Optimization 26 (7-8) 773 (2005) https://doi.org/10.1080/01630560500377311
A semi-smooth Newton method for control constrained boundary optimal control of the Navier–Stokes equations
J.C. de los Reyes and K. Kunisch Nonlinear Analysis: Theory, Methods & Applications 62 (7) 1289 (2005) https://doi.org/10.1016/j.na.2005.04.035
Analysis and finite element error estimates for the velocity tracking problem for Stokes flowsviaa penalized formulation
Konstantinos Chrysafinos ESAIM: Control, Optimisation and Calculus of Variations 10 (4) 574 (2004) https://doi.org/10.1051/cocv:2004021
A Posteriori Error Estimates for Discontinuous Galerkin Time-Stepping Method for Optimal Control Problems Governed by Parabolic Equations
Wenbin Liu, Heping Ma, Tao Tang and Ningning Yan SIAM Journal on Numerical Analysis 42 (3) 1032 (2004) https://doi.org/10.1137/S0036142902397090
FINITE ELEMENT APPROXIMATION AND COMPUTATIONS OF OPTIMAL DIRICHLET BOUNDARY CONTROL PROBLEMS FOR THE BOUSSINESQ EQUATIONS
Hyung-Chun Lee and Soo-Hyun Kim Journal of the Korean Mathematical Society 41 (4) 681 (2004) https://doi.org/10.4134/JKMS.2004.41.4.681
Second order methods for boundary control of the instationary Navier‐Stokes system
M. Hinze and K. Kunisch ZAMM - Journal of Applied Mathematics and Mechanics / Zeitschrift für Angewandte Mathematik und Mechanik 84 (3) 171 (2004) https://doi.org/10.1002/zamm.200310094
A posteriori error estimates for control problems governed by nonlinear elliptic equations
Wenbin Liu and Ningning Yan Applied Numerical Mathematics 47 (2) 173 (2003) https://doi.org/10.1016/S0168-9274(03)00054-0
Constrained optimal control of Navier–Stokes flow by semismooth Newton methods
Michael Ulbrich Systems & Control Letters 48 (3-4) 297 (2003) https://doi.org/10.1016/S0167-6911(02)00274-8
Robin-type boundary control problems for the nonlinear Boussinesq type equations
Aziz Belmiloudi Journal of Mathematical Analysis and Applications 273 (2) 428 (2002) https://doi.org/10.1016/S0022-247X(02)00252-4
Optimal Control of Complex Structures
M. Gunzburger and S. Manservisi Optimal Control of Complex Structures 279 (2001) https://doi.org/10.1007/978-3-0348-8148-7_23
Fast Solution of Discretized Optimization Problems
WenBin Liu Fast Solution of Discretized Optimization Problems 154 (2001) https://doi.org/10.1007/978-3-0348-8233-0_12
Analysis and Approximation of the Velocity Tracking Problem for Navier--Stokes Flows with Distributed Control
M. D. Gunzburger and S. Manservisi SIAM Journal on Numerical Analysis 37 (5) 1481 (2000) https://doi.org/10.1137/S0036142997329414
Analysis of Neumann Boundary Optimal Control Problems for the Stationary Boussinesq Equations Including Solid Media
Hyung-Chun Lee and O. Yu. Imanuvilov SIAM Journal on Control and Optimization 39 (2) 457 (2000) https://doi.org/10.1137/S0363012998347110
An Optimization-Based Domain Decomposition Method for the Navier--Stokes Equations
Max D. Gunzburger and Hyesuk Kwon Lee SIAM Journal on Numerical Analysis 37 (5) 1455 (2000) https://doi.org/10.1137/S0036142998332864
On a shape control problem for the stationary Navier-Stokes equations
Max D. Gunzburger, Hongchul Kim and Sandro Manservisi ESAIM: Mathematical Modelling and Numerical Analysis 34 (6) 1233 (2000) https://doi.org/10.1051/m2an:2000125
A posteriori error estimates for some model boundary control problems
Wenbin Liu and Ningning Yan Journal of Computational and Applied Mathematics 120 (1-2) 159 (2000) https://doi.org/10.1016/S0377-0427(00)00308-3
M.D. Gunzburger, H.-C. Kim and S. Manservisi 5 4473 (2000) https://doi.org/10.1109/CDC.2001.914612
The Velocity Tracking Problem for Navier--Stokes Flows With Boundary Control
M. D. Gunzburger and S. Manservisi SIAM Journal on Control and Optimization 39 (2) 594 (2000) https://doi.org/10.1137/S0363012999353771
Analysis of Optimal Control Problems for the 2-D Stationary Boussinesq Equations
Hyung-Chun Lee and O.Yu. Imanuvilov Journal of Mathematical Analysis and Applications 242 (2) 191 (2000) https://doi.org/10.1006/jmaa.1999.6651
Existence and Characterization of an Optimal Control for the Problem of Long Waves in a Shallow-Water Model
Aziz Belmiloudi SIAM Journal on Control and Optimization 39 (5) 1558 (2000) https://doi.org/10.1137/S0363012999335961
Numerical Approximation of Optimal Flow Control Problems by a Penalty Method: Error Estimates and Numerical Results
L. S. Hou and S. S. Ravindran SIAM Journal on Scientific Computing 20 (5) 1753 (1999) https://doi.org/10.1137/S1064827597325153
The Velocity Tracking Problem for Navier--Stokes Flows with Bounded Distributed Controls
M. D. Gunzburger and S. Manservisi SIAM Journal on Control and Optimization 37 (6) 1913 (1999) https://doi.org/10.1137/S0363012998337400
Optimal Control
Matthias Heinkenschloss Applied Optimization, Optimal Control 15 178 (1998) https://doi.org/10.1007/978-1-4757-6095-8_9
Computations of Optimal Controls for Incompressible Flows
M. D. GUNZBURGER, L. S. HOU, S. MANSERVISIM and Y. Yan International Journal of Computational Fluid Dynamics 11 (1-2) 181 (1998) https://doi.org/10.1080/10618569808940872
A Penalized Neumann Control Approach for Solving an Optimal Dirichlet Control Problem for the Navier--Stokes Equations
L. S. Hou and S. S. Ravindran SIAM Journal on Control and Optimization 36 (5) 1795 (1998) https://doi.org/10.1137/S0363012996304870
An efficient method of solving the Navier-Stokes equations for flow control
H. M. Park and M. W. Lee International Journal for Numerical Methods in Engineering 41 (6) 1133 (1998) https://doi.org/10.1002/(SICI)1097-0207(19980330)41:6<1133::AID-NME329>3.0.CO;2-Y
Solvability of stationary boundary control problems for heat convection equations
G. V. Alekseev Siberian Mathematical Journal 39 (5) 844 (1998) https://doi.org/10.1007/BF02672906
Optimal Control of Thermally Convected Fluid Flows
K. Ito and S. S. Ravindran SIAM Journal on Scientific Computing 19 (6) 1847 (1998) https://doi.org/10.1137/S1064827596299731
Existence of an Optimal Solution of a Shape Control Problem for the Stationary Navier--Stokes Equations
Max D. Gunzburger and Hongchul Kim SIAM Journal on Control and Optimization 36 (3) 895 (1998) https://doi.org/10.1137/S0363012994276123
Boundary Value Problems and Optimal Boundary Control for the Navier--Stokes System: the Two-Dimensional Case
A. V. Fursikov, M. D. Gunzburger and L. S. Hou SIAM Journal on Control and Optimization 36 (3) 852 (1998) https://doi.org/10.1137/S0363012994273374
Flow Control
Pierre C. Perrier Lecture Notes in Physics, Flow Control 53 275 (1998) https://doi.org/10.1007/3-540-69672-5_5
Numerical Solution of Optimal Distributed Control Problems for Incompressible Flows
L. S. HOU, S. S. RAVINDRAN and Y. YAN International Journal of Computational Fluid Dynamics 8 (2) 99 (1997) https://doi.org/10.1080/10618569708940798
NUMERICAL SOLUTIONS OF OPTIMAL CONTROL FOR THERMALLY CONVECTIVE FLOWS
S. S. Ravindran International Journal for Numerical Methods in Fluids 25 (2) 205 (1997) https://doi.org/10.1002/(SICI)1097-0363(19970730)25:2<205::AID-FLD547>3.0.CO;2-N
Pages:
1 to 100 of 111 articles