Articles citing this article

The Citing articles tool gives a list of articles citing the current article.
The citing articles come from EDP Sciences database, as well as other publishers participating in CrossRef Cited-by Linking Program. You can set up your personal account to receive an email alert each time this article is cited by a new article (see the menu on the right-hand side of the abstract page).

Cited article:

Numerical Approximation of Hyperbolic Systems of Conservation Laws

Edwige Godlewski and Pierre-Arnaud Raviart
Applied Mathematical Sciences, Numerical Approximation of Hyperbolic Systems of Conservation Laws 118 425 (2021)
https://doi.org/10.1007/978-1-0716-1344-3_5

On the Convergence of Space-Time Discontinuous Galerkin Schemes for Scalar Conservation Laws

Georg May and Mohammad Zakerzadeh
SIAM Journal on Numerical Analysis 54 (4) 2452 (2016)
https://doi.org/10.1137/15M102438X

Error Estimate for Time-Explicit Finite Volume Approximation of Strong Solutions to Systems of Conservation Laws

Clément Cancès, Hélène Mathis and Nicolas Seguin
SIAM Journal on Numerical Analysis 54 (2) 1263 (2016)
https://doi.org/10.1137/15M1029886

On the Convergence of a Shock Capturing Discontinuous Galerkin Method for Nonlinear Hyperbolic Systems of Conservation Laws

Mohammad Zakerzadeh and Georg May
SIAM Journal on Numerical Analysis 54 (2) 874 (2016)
https://doi.org/10.1137/14096503X

$L^2$-Stability Independent of Diffusion for a Finite Element--Finite Volume Discretization of a Linear Convection-Diffusion Equation

Paul Deuring, Robert Eymard and Marcus Mildner
SIAM Journal on Numerical Analysis 53 (1) 508 (2015)
https://doi.org/10.1137/140961146

Optimal bounds for a Lagrange interpolation inequality for piecewise linear continuous finite elements in two space dimensions

Èrgash Muhamadiev and Murtazo Nazarov
Journal of Mathematical Analysis and Applications 423 (2) 940 (2015)
https://doi.org/10.1016/j.jmaa.2014.10.027

On a Canonical Form for Maxwell Equations and Convergence of Finite Element Schemes for a Vlasov-Maxwell System

M. Asadzadeh
Journal of Computational and Theoretical Transport 43 (1-7) 336 (2014)
https://doi.org/10.1080/00411450.2014.922102

Residual‐based artificial viscosity for simulation of turbulent compressible flow using adaptive finite element methods

Murtazo Nazarov and Johan Hoffman
International Journal for Numerical Methods in Fluids 71 (3) 339 (2013)
https://doi.org/10.1002/fld.3663

Nonlinear Conservation Laws and Applications

Philippe G. Lefloch
The IMA Volumes in Mathematics and its Applications, Nonlinear Conservation Laws and Applications 153 379 (2011)
https://doi.org/10.1007/978-1-4419-9554-4_21

Adaptive modeling of turbulent flow with residual based turbulent kinetic energy dissipation

Johan Hoffman, Johan Jansson and Rodrigo Vilela De Abreu
Computer Methods in Applied Mechanics and Engineering 200 (37-40) 2758 (2011)
https://doi.org/10.1016/j.cma.2010.11.016

Asymptotic Behavior of Two-Phase Flows in Heterogeneous Porous Media for Capillarity Depending Only on Space. II. Nonclassical Shocks to Model Oil-Trapping

Clément Cancès
SIAM Journal on Mathematical Analysis 42 (2) 972 (2010)
https://doi.org/10.1137/090747993

Superconvergence of discontinuous Galerkin methods for hyperbolic systems

Tie Zhang, Jiandong Li and Shuhua Zhang
Journal of Computational and Applied Mathematics 223 (2) 725 (2009)
https://doi.org/10.1016/j.cam.2008.02.016

Hyperbolic conservation laws on manifolds. An error estimate for finite volume schemes

Philippe G. LeFloch, Baver Okutmustur and Wladimir Neves
Acta Mathematica Sinica, English Series 25 (7) 1041 (2009)
https://doi.org/10.1007/s10114-009-8090-y

Convergence of implicit Finite Volume methods for scalar conservation laws with discontinuous flux function

Sébastien Martin and Julien Vovelle
ESAIM: Mathematical Modelling and Numerical Analysis 42 (5) 699 (2008)
https://doi.org/10.1051/m2an:2008023

Convergence of an Implicit Spacetime Godunov Finite Volume Method for a Class of Hyperbolic Systems

Katarina Jegdic and Robert L. Jerrard
SIAM Journal on Numerical Analysis 44 (5) 1921 (2006)
https://doi.org/10.1137/040613731

Error estimate for the approximation of nonlinear conservation laws on bounded domains by the finite volume method

Mario Ohlberger and Julien Vovelle
Mathematics of Computation 75 (253) 113 (2005)
https://doi.org/10.1090/S0025-5718-05-01770-9

Convergence analysis of the streamline diffusion and discontinuous Galerkin methods for the Vlasov‐Fokker‐Planck system

M. Asadzadeh and P. Kowalczyk
Numerical Methods for Partial Differential Equations 21 (3) 472 (2005)
https://doi.org/10.1002/num.20044

An Explicit A Priori Estimate for a Finite Volume Approximation of Linear Advection on Non-Cartesian Grids

Bruno Després
SIAM Journal on Numerical Analysis 42 (2) 484 (2004)
https://doi.org/10.1137/S0036142901394558

Entropy Formulation for Parabolic Degenerate Equations with General Dirichlet Boundary Conditions and Application to the Convergence of FV Methods

Anthony Michel and Julien Vovelle
SIAM Journal on Numerical Analysis 41 (6) 2262 (2003)
https://doi.org/10.1137/S0036142902406612

Finite volume schemes with equilibrium type discretization of source terms for scalar conservation laws

Ramaz Botchorishvili and Olivier Pironneau
Journal of Computational Physics 187 (2) 391 (2003)
https://doi.org/10.1016/S0021-9991(03)00086-X

Theory and Numerics of Differential Equations

Kyoung-Sook Moon, Anders Szepessy, Raúl Tempone and Georgios Zouraris
Universitext, Theory and Numerics of Differential Equations 231 (2001)
https://doi.org/10.1007/978-3-662-04354-7_5

Generalized Harten Formalism and Longitudinal Variation Diminishing schemes for Linear Advection on Arbitrary Grids

Bruno Després and Frédéric Lagoutière
ESAIM: Mathematical Modelling and Numerical Analysis 35 (6) 1159 (2001)
https://doi.org/10.1051/m2an:2001152

A priori error estimates for numerical methods for scalar conservation laws. Part I: The general approach

Bernardo Cockburn and Pierre-Alain Gremaud
Mathematics of Computation 65 (214) 533 (1996)
https://doi.org/10.1090/S0025-5718-96-00701-6

Error Estimates for Finite Element Methods for Scalar Conservation Laws

Bernardo Cockburn and Pierre-Alain Gremaud
SIAM Journal on Numerical Analysis 33 (2) 522 (1996)
https://doi.org/10.1137/0733028

Adaptive finite element methods for conservation laws based on a posteriori error estimates

Claes Johnson and Anders Szepessy
Communications on Pure and Applied Mathematics 48 (3) 199 (1995)
https://doi.org/10.1002/cpa.3160480302

Numerical Viscosity and Convergence of Finite Volume Methods for Conservation Laws with Boundary Conditions

S. Benharbit, A. Chalabi and J. P. Vila
SIAM Journal on Numerical Analysis 32 (3) 775 (1995)
https://doi.org/10.1137/0732036

Convergence of the Finite Volume Method for Multidimensional Conservation Laws

B. Cockburn, F. Coquel and P. G. LeFloch
SIAM Journal on Numerical Analysis 32 (3) 687 (1995)
https://doi.org/10.1137/0732032

Convergence and error estimates in finite volume schemes for general multidimensional scalar conservation laws. I. Explicite monotone schemes

J.-P. Vila
ESAIM: Mathematical Modelling and Numerical Analysis 28 (3) 267 (1994)
https://doi.org/10.1051/m2an/1994280302671

Convergence of Finite Difference Schemes for Conservation Laws in Several Space Dimensions: A General Theory

Frédéric Coquel and Philippe Le Floch
SIAM Journal on Numerical Analysis 30 (3) 675 (1993)
https://doi.org/10.1137/0730033