The Citing articles tool gives a list of articles citing the current article. The citing articles come from EDP Sciences database, as well as other publishers participating in CrossRef Cited-by Linking Program . You can set up your personal account to receive an email alert each time this article is cited by a new article (see the menu on the right-hand side of the abstract page).
Cited article:
A. Szepessy
ESAIM: M2AN, 25 6 (1991) 749-782
Published online: 2017-01-31
This article has been cited by the following article(s):
37 articles
Numerical Approximation of Hyperbolic Systems of Conservation Laws
Edwige Godlewski and Pierre-Arnaud Raviart Applied Mathematical Sciences, Numerical Approximation of Hyperbolic Systems of Conservation Laws 118 425 (2021) https://doi.org/10.1007/978-1-0716-1344-3_5
On the Convergence of Space-Time Discontinuous Galerkin Schemes for Scalar Conservation Laws
Georg May and Mohammad Zakerzadeh SIAM Journal on Numerical Analysis 54 (4) 2452 (2016) https://doi.org/10.1137/15M102438X
Mohammad Zakerzadeh and Georg May (2016) https://doi.org/10.2514/6.2016-3496
Error Estimate for Time-Explicit Finite Volume Approximation of Strong Solutions to Systems of Conservation Laws
Clément Cancès, Hélène Mathis and Nicolas Seguin SIAM Journal on Numerical Analysis 54 (2) 1263 (2016) https://doi.org/10.1137/15M1029886
On the Convergence of a Shock Capturing Discontinuous Galerkin Method for Nonlinear Hyperbolic Systems of Conservation Laws
Mohammad Zakerzadeh and Georg May SIAM Journal on Numerical Analysis 54 (2) 874 (2016) https://doi.org/10.1137/14096503X
$L^2$-Stability Independent of Diffusion for a Finite Element--Finite Volume Discretization of a Linear Convection-Diffusion Equation
Paul Deuring, Robert Eymard and Marcus Mildner SIAM Journal on Numerical Analysis 53 (1) 508 (2015) https://doi.org/10.1137/140961146
Optimal bounds for a Lagrange interpolation inequality for piecewise linear continuous finite elements in two space dimensions
Èrgash Muhamadiev and Murtazo Nazarov Journal of Mathematical Analysis and Applications 423 (2) 940 (2015) https://doi.org/10.1016/j.jmaa.2014.10.027
On a Canonical Form for Maxwell Equations and Convergence of Finite Element Schemes for a Vlasov-Maxwell System
M. Asadzadeh Journal of Computational and Theoretical Transport 43 (1-7) 336 (2014) https://doi.org/10.1080/00411450.2014.922102
Convergence of a residual based artificial viscosity finite element method
Murtazo Nazarov Computers & Mathematics with Applications 65 (4) 616 (2013) https://doi.org/10.1016/j.camwa.2012.11.003
Residual‐based artificial viscosity for simulation of turbulent compressible flow using adaptive finite element methods
Murtazo Nazarov and Johan Hoffman International Journal for Numerical Methods in Fluids 71 (3) 339 (2013) https://doi.org/10.1002/fld.3663
Nonlinear Conservation Laws and Applications
Philippe G. Lefloch The IMA Volumes in Mathematics and its Applications, Nonlinear Conservation Laws and Applications 153 379 (2011) https://doi.org/10.1007/978-1-4419-9554-4_21
Adaptive modeling of turbulent flow with residual based turbulent kinetic energy dissipation
Johan Hoffman, Johan Jansson and Rodrigo Vilela De Abreu Computer Methods in Applied Mechanics and Engineering 200 (37-40) 2758 (2011) https://doi.org/10.1016/j.cma.2010.11.016
Asymptotic Behavior of Two-Phase Flows in Heterogeneous Porous Media for Capillarity Depending Only on Space. II. Nonclassical Shocks to Model Oil-Trapping
Clément Cancès SIAM Journal on Mathematical Analysis 42 (2) 972 (2010) https://doi.org/10.1137/090747993
Superconvergence of discontinuous Galerkin methods for hyperbolic systems
Tie Zhang, Jiandong Li and Shuhua Zhang Journal of Computational and Applied Mathematics 223 (2) 725 (2009) https://doi.org/10.1016/j.cam.2008.02.016
Hyperbolic conservation laws on manifolds. An error estimate for finite volume schemes
Philippe G. LeFloch, Baver Okutmustur and Wladimir Neves Acta Mathematica Sinica, English Series 25 (7) 1041 (2009) https://doi.org/10.1007/s10114-009-8090-y
Convergence of implicit Finite Volume methods for scalar conservation laws with discontinuous flux function
Sébastien Martin and Julien Vovelle ESAIM: Mathematical Modelling and Numerical Analysis 42 (5) 699 (2008) https://doi.org/10.1051/m2an:2008023
Convergence of an Implicit Spacetime Godunov Finite Volume Method for a Class of Hyperbolic Systems
Katarina Jegdic and Robert L. Jerrard SIAM Journal on Numerical Analysis 44 (5) 1921 (2006) https://doi.org/10.1137/040613731
Error estimate for the approximation of nonlinear conservation laws on bounded domains by the finite volume method
Mario Ohlberger and Julien Vovelle Mathematics of Computation 75 (253) 113 (2005) https://doi.org/10.1090/S0025-5718-05-01770-9
Convergence analysis of the streamline diffusion and discontinuous Galerkin methods for the Vlasov‐Fokker‐Planck system
M. Asadzadeh and P. Kowalczyk Numerical Methods for Partial Differential Equations 21 (3) 472 (2005) https://doi.org/10.1002/num.20044
Kinetic approximation of a boundary value problem for conservation laws
Denise Aregba-Driollet and Vuk Milišić Numerische Mathematik 97 (4) 595 (2004) https://doi.org/10.1007/s00211-003-0514-5
An Explicit A Priori Estimate for a Finite Volume Approximation of Linear Advection on Non-Cartesian Grids
Bruno Després SIAM Journal on Numerical Analysis 42 (2) 484 (2004) https://doi.org/10.1137/S0036142901394558
Entropy Formulation for Parabolic Degenerate Equations with General Dirichlet Boundary Conditions and Application to the Convergence of FV Methods
Anthony Michel and Julien Vovelle SIAM Journal on Numerical Analysis 41 (6) 2262 (2003) https://doi.org/10.1137/S0036142902406612
Finite volume schemes with equilibrium type discretization of source terms for scalar conservation laws
Ramaz Botchorishvili and Olivier Pironneau Journal of Computational Physics 187 (2) 391 (2003) https://doi.org/10.1016/S0021-9991(03)00086-X
Theory and Numerics of Differential Equations
Kyoung-Sook Moon, Anders Szepessy, Raúl Tempone and Georgios Zouraris Universitext, Theory and Numerics of Differential Equations 231 (2001) https://doi.org/10.1007/978-3-662-04354-7_5
Generalized Harten Formalism and Longitudinal Variation Diminishing schemes for Linear Advection on Arbitrary Grids
Bruno Després and Frédéric Lagoutière ESAIM: Mathematical Modelling and Numerical Analysis 35 (6) 1159 (2001) https://doi.org/10.1051/m2an:2001152
Obstacle problems for scalar conservation laws
Laurent Levi ESAIM: Mathematical Modelling and Numerical Analysis 35 (3) 575 (2001) https://doi.org/10.1051/m2an:2001127
An Analysis of Some High Accuracy Finite Element Methods for Hyperbolic Problems
Aihui Zhou SIAM Journal on Numerical Analysis 39 (3) 1014 (2001) https://doi.org/10.1137/S0036142999362894
A priori error estimates for numerical methods for scalar conservation laws. Part I: The general approach
Bernardo Cockburn and Pierre-Alain Gremaud Mathematics of Computation 65 (214) 533 (1996) https://doi.org/10.1090/S0025-5718-96-00701-6
Error Estimates for Finite Element Methods for Scalar Conservation Laws
Bernardo Cockburn and Pierre-Alain Gremaud SIAM Journal on Numerical Analysis 33 (2) 522 (1996) https://doi.org/10.1137/0733028
Adaptive finite element methods for conservation laws based on a posteriori error estimates
Claes Johnson and Anders Szepessy Communications on Pure and Applied Mathematics 48 (3) 199 (1995) https://doi.org/10.1002/cpa.3160480302
Numerical Viscosity and Convergence of Finite Volume Methods for Conservation Laws with Boundary Conditions
S. Benharbit, A. Chalabi and J. P. Vila SIAM Journal on Numerical Analysis 32 (3) 775 (1995) https://doi.org/10.1137/0732036
Convergence of the Finite Volume Method for Multidimensional Conservation Laws
B. Cockburn, F. Coquel and P. G. LeFloch SIAM Journal on Numerical Analysis 32 (3) 687 (1995) https://doi.org/10.1137/0732032
An error estimate for finite volume methods for multidimensional conservation laws
Bernardo Cockburn, Frédéric Coquel and Philippe LeFloch Mathematics of Computation 63 (207) 77 (1994) https://doi.org/10.1090/S0025-5718-1994-1240657-4
Convergence and error estimates in finite volume schemes for general multidimensional scalar conservation laws. I. Explicite monotone schemes
J.-P. Vila ESAIM: Mathematical Modelling and Numerical Analysis 28 (3) 267 (1994) https://doi.org/10.1051/m2an/1994280302671
Stabilized finite element methods for miscible displacement in porous media
Yuting Wei ESAIM: Mathematical Modelling and Numerical Analysis 28 (5) 611 (1994) https://doi.org/10.1051/m2an/1994280506111
Convergence of Finite Difference Schemes for Conservation Laws in Several Space Dimensions: A General Theory
Frédéric Coquel and Philippe Le Floch SIAM Journal on Numerical Analysis 30 (3) 675 (1993) https://doi.org/10.1137/0730033
On the stability of finite element methods for shock waves
Anders Szepessy Communications on Pure and Applied Mathematics 45 (8) 923 (1992) https://doi.org/10.1002/cpa.3160450802