Articles citing this article

The Citing articles tool gives a list of articles citing the current article.
The citing articles come from EDP Sciences database, as well as other publishers participating in CrossRef Cited-by Linking Program. You can set up your personal account to receive an email alert each time this article is cited by a new article (see the menu on the right-hand side of the abstract page).

Cited article:

This article has been cited by the following article(s):

On nonlinear stability of linear pinch

M. Padula
Applicable Analysis 90 (1) 159 (2011)
DOI: 10.1080/00036811.2010.490527
See this article

Fractal-Fractional Mathematical Model Addressing the Situation of Corona Virus in Pakistan

Kamal Shah, Muhammad Arfan, Ibrahim Mahariq, Ali Ahmadian, Soheil Salahshour and Massimiliano Ferrara
Results in Physics 19 103560 (2020)
DOI: 10.1016/j.rinp.2020.103560
See this article

Analysis and Numerical Approximation of a Stationary MHD Flow Problem with Nonideal Boundary

A. J. Meir and Paul G. Schmidt
SIAM Journal on Numerical Analysis 36 (4) 1304 (1999)
DOI: 10.1137/S003614299732615X
See this article

Investigation of fractional order tuberculosis (TB) model via Caputo derivative

Ihsan Ullah, Saeed Ahmad, Mati ur Rahman and Muhammad Arfan
Chaos, Solitons & Fractals 142 110479 (2021)
DOI: 10.1016/j.chaos.2020.110479
See this article

On fractional order model of tumor dynamics with drug interventions under nonlocal fractional derivative

Muhammad Arfan, Kamal Shah, Aman Ullah, Meshal Shutaywi, Poom Kumam and Zahir Shah
Results in Physics 21 103783 (2021)
DOI: 10.1016/j.rinp.2020.103783
See this article

Pierre-Étienne Druet
158 123 (2009)
DOI: 10.1007/978-3-7643-8923-9_7
See this article

On a comprehensive model of the novel coronavirus (COVID-19) under Mittag-Leffler derivative

Mohammed S. Abdo, Kamal Shah, Hanan A. Wahash and Satish K. Panchal
Chaos, Solitons & Fractals 135 109867 (2020)
DOI: 10.1016/j.chaos.2020.109867
See this article

Nonlinear fractional mathematical model of tuberculosis (TB) disease with incomplete treatment under Atangana-Baleanu derivative

Mati Ur Rahman, Muhammad Arfan, Zahir Shah, Poom Kumam and Meshal Shutaywi
Alexandria Engineering Journal 60 (3) 2845 (2021)
DOI: 10.1016/j.aej.2021.01.015
See this article

An efficient tool for solving two‐dimensional fuzzy fractional‐ordered heat equation

Muhammad Arfan, Kamal Shah, Thabet Abdeljawad and Zakia Hammouch
Numerical Methods for Partial Differential Equations 37 (2) 1407 (2021)
DOI: 10.1002/num.22587
See this article

Modelling of a magnetohydrodynamics free surface problem arising in Czochralski crystal growth

R. Griesse and A. J. Meir
Mathematical and Computer Modelling of Dynamical Systems 15 (2) 163 (2009)
DOI: 10.1080/13873950802551542
See this article

Investigating a nonlinear dynamical model of COVID-19 disease under fuzzy caputo, random and ABC fractional order derivative

Mati ur Rahman, Muhammad Arfan, Kamal Shah and J.F. Gómez-Aguilar
Chaos, Solitons & Fractals 140 110232 (2020)
DOI: 10.1016/j.chaos.2020.110232
See this article

Shape and topology optimal design problems in electromagnetic casting

Alfredo Canelas and Jean Rodolphe Roche
Engineering Computations 39 (1) 147 (2022)
DOI: 10.1108/EC-05-2021-0300
See this article

On a nonlinear fractional order model of dengue fever disease under Caputo-Fabrizio derivative

Kamal Shah, Fahd Jarad and Thabet Abdeljawad
Alexandria Engineering Journal 59 (4) 2305 (2020)
DOI: 10.1016/j.aej.2020.02.022
See this article

On a two-dimensional magnetohydrodynamic problem. II. Numerical analysis

Jacques Rappaz and Rachid Touzani
ESAIM: Mathematical Modelling and Numerical Analysis 30 (2) 215 (1996)
DOI: 10.1051/m2an/1996300202151
See this article

A comparative study of spreading of novel corona virus disease by ussing fractional order modified SEIR model

Hussam Alrabaiah, Muhammad Arfan, Kamal Shah, Ibrahim Mahariq and Aman Ullah
Alexandria Engineering Journal 60 (1) 573 (2021)
DOI: 10.1016/j.aej.2020.09.036
See this article

Variational methods for stationary MHD flow under natural interface conditions

A.J. Meir and Paul G. Schmidt
Nonlinear Analysis: Theory, Methods & Applications 26 (4) 659 (1996)
DOI: 10.1016/0362-546X(94)00308-5
See this article