Articles citing this article

The Citing articles tool gives a list of articles citing the current article.
The citing articles come from EDP Sciences database, as well as other publishers participating in CrossRef Cited-by Linking Program. You can set up your personal account to receive an email alert each time this article is cited by a new article (see the menu on the right-hand side of the abstract page).

Cited article:

Bilinear Optimal Control of the Keller–Segel Logistic Model in 2D-Domains

P. Braz e Silva, F. Guillén-González, C. F. Perusato and M. A. Rodríguez-Bellido
Applied Mathematics & Optimization 87 (3) (2023)
https://doi.org/10.1007/s00245-023-09988-y

Optimal control of friction coefficient in Signorini contact problems

El‐Hassan Essoufi and Abderrahim Zafrar
Optimal Control Applications and Methods 42 (6) 1794 (2021)
https://doi.org/10.1002/oca.2765

An optimal control problem related to a 3D-chemotaxis-Navier-Stokes model

J. López-Ríos and Élder J. Villamizar-Roa
ESAIM: Control, Optimisation and Calculus of Variations 27 58 (2021)
https://doi.org/10.1051/cocv/2021055

Optimal boundary control for the stationary Boussinesq equations with variable density

José Luiz Boldrini, Exequiel Mallea-Zepeda and Marko Antonio Rojas-Medar
Communications in Contemporary Mathematics 22 (05) 1950031 (2020)
https://doi.org/10.1142/S0219199719500317

An Optimal Control Problem for the Steady Nonhomogeneous Asymmetric Fluids

Exequiel Mallea-Zepeda, Elva Ortega-Torres and Élder J. Villamizar-Roa
Applied Mathematics & Optimization 80 (2) 299 (2019)
https://doi.org/10.1007/s00245-017-9466-5

Bilinear Optimal Control Problem for the Stationary Navier–Stokes Equations with Variable Density and Slip Boundary Condition

Exequiel Mallea-Zepeda, Eber Lenes and Jonnathan Rodríguez Zambrano
Bulletin of the Brazilian Mathematical Society, New Series 50 (4) 871 (2019)
https://doi.org/10.1007/s00574-019-00131-6

Current Trends in Mathematical Analysis and Its Interdisciplinary Applications

Mircea Sofonea
Current Trends in Mathematical Analysis and Its Interdisciplinary Applications 445 (2019)
https://doi.org/10.1007/978-3-030-15242-0_13

Boundary Control Problem for Heat Convection Equations with Slip Boundary Condition

Exequiel Mallea-Zepeda, Eber Lenes and Elvis Valero
Mathematical Problems in Engineering 2018 1 (2018)
https://doi.org/10.1155/2018/7959761

On a distributed control problem for a coupled chemotaxis-fluid model

M. Ángeles Rodríguez-Bellido, Diego A. Rueda-Gómez and Élder J. Villamizar-Roa
Discrete & Continuous Dynamical Systems - B 23 (2) 557 (2018)
https://doi.org/10.3934/dcdsb.2017208

Penalization model for Navier–Stokes–Darcy equations with application to porosity-oriented topology optimization

Alain Bastide, Pierre-Henri Cocquet and Delphine Ramalingom
Mathematical Models and Methods in Applied Sciences 28 (08) 1481 (2018)
https://doi.org/10.1142/S0218202518500409

On the Rayleigh–Bénard–Marangoni system and a related optimal control problem

D.A. Rueda-Gómez and E.J. Villamizar-Roa
Computers & Mathematics with Applications 74 (12) 2969 (2017)
https://doi.org/10.1016/j.camwa.2017.07.038

Boundary optimal control for quasistatic bilateral frictional contact problems

Anca Capatina and Claudia Timofte
Nonlinear Analysis: Theory, Methods & Applications 94 84 (2014)
https://doi.org/10.1016/j.na.2013.08.004

Variational Inequalities and Frictional Contact Problems

Anca Capatina
Advances in Mechanics and Mathematics, Variational Inequalities and Frictional Contact Problems 31 135 (2014)
https://doi.org/10.1007/978-3-319-10163-7_8

Stability of Optimal Controls for the Stationary Boussinesq Equations

Gennady Alekseev and Dmitry Tereshko
International Journal of Differential Equations 2011 1 (2011)
https://doi.org/10.1155/2011/535736

Variational approach and optimal control of a PEM fuel cell

A. Căpăţînă, H. Ene, G. Paşa, D. Poliševski and R. Stavre
Nonlinear Analysis: Theory, Methods & Applications 74 (10) 3242 (2011)
https://doi.org/10.1016/j.na.2011.02.003

INFLUENCE OF OPTIMAL CONTROL ON BIFURCATIONS OF 3D AXISYMMETRIC BUOYANT FLOWS

M. C. NAVARRO and H. HERRERO
International Journal of Bifurcation and Chaos 19 (04) 1279 (2009)
https://doi.org/10.1142/S0218127409023627

Optimal control problems for the two dimensional Rayleigh—Bénard type convection by a gradient method

Hyung -Chun Lee
Japan Journal of Industrial and Applied Mathematics 26 (1) 93 (2009)
https://doi.org/10.1007/BF03167547

Optimal and Robust Control of Fluid Flows: Some Theoretical and Computational Aspects

T. Tachim Medjo, R. Temam and M. Ziane
Applied Mechanics Reviews 61 (1) (2008)
https://doi.org/10.1115/1.2830523

Coefficient inverse extremum problems for stationary heat and mass transfer equations

G. V. Alekseev
Computational Mathematics and Mathematical Physics 47 (6) 1007 (2007)
https://doi.org/10.1134/S0965542507060115

Error Estimates for the Numerical Approximation of a Distributed Control Problem for the Steady-State Navier–Stokes Equations

Eduardo Casas, Mariano Mateos and Jean-Pierre Raymond
SIAM Journal on Control and Optimization 46 (3) 952 (2007)
https://doi.org/10.1137/060649999

FINITE ELEMENT APPROXIMATION AND COMPUTATIONS OF OPTIMAL DIRICHLET BOUNDARY CONTROL PROBLEMS FOR THE BOUSSINESQ EQUATIONS

Hyung-Chun Lee and Soo-Hyun Kim
Journal of the Korean Mathematical Society 41 (4) 681 (2004)
https://doi.org/10.4134/JKMS.2004.41.4.681

Analysis of Neumann Boundary Optimal Control Problems for the Stationary Boussinesq Equations Including Solid Media

Hyung-Chun Lee and O. Yu. Imanuvilov
SIAM Journal on Control and Optimization 39 (2) 457 (2000)
https://doi.org/10.1137/S0363012998347110

Analysis of Optimal Control Problems for the 2-D Stationary Boussinesq Equations

Hyung-Chun Lee and O.Yu. Imanuvilov
Journal of Mathematical Analysis and Applications 242 (2) 191 (2000)
https://doi.org/10.1006/jmaa.1999.6651

Solvability of stationary boundary control problems for heat convection equations

G. V. Alekseev
Siberian Mathematical Journal 39 (5) 844 (1998)
https://doi.org/10.1007/BF02672906