Articles citing this article

The Citing articles tool gives a list of articles citing the current article.
The citing articles come from EDP Sciences database, as well as other publishers participating in CrossRef Cited-by Linking Program. You can set up your personal account to receive an email alert each time this article is cited by a new article (see the menu on the right-hand side of the abstract page).

Cited article:

This article has been cited by the following article(s):

A Robust Numerical Method for Stokes Equations Based on Divergence-FreeH(div) Finite Element Methods

Junping Wang, Yanqiu Wang and Xiu Ye
SIAM Journal on Scientific Computing 31 (4) 2784 (2009)
DOI: 10.1137/080730044
See this article

A numerical scheme with divergence free H-div triangular finite element for the Stokes equations

Xiu Ye and Shangyou Zhang
Applied Numerical Mathematics 167 211 (2021)
DOI: 10.1016/j.apnum.2021.05.005
See this article

A comparison of a posteriori error estimators for mixed finite element discretizations by Raviart-Thomas elements

Barbara Wohlmuth and Ronald Hoppe
Mathematics of Computation 68 (228) 1347 (1999)
DOI: 10.1090/S0025-5718-99-01125-4
See this article

The Convergence Rate of Iterative Procedures for Elliptic Problems in Heterogeneous Media

Alexandre Sant Francisco, Helio Pedro Amaral Souto and Thiago Jordem Pereira
Defect and Diffusion Forum 353 298 (2014)
DOI: 10.4028/www.scientific.net/DDF.353.298
See this article

Multidisciplinary interactions in energy and environmental modeling

Richard E. Ewing
Journal of Computational and Applied Mathematics 74 (1-2) 193 (1996)
DOI: 10.1016/0377-0427(96)00024-6
See this article

Sharp algebraic and total a posteriori error bounds for h and p finite elements via a multilevel approach. Recovering mass balance in any situation

Jan Papež, Ulrich Rüde, Martin Vohralík and Barbara Wohlmuth
Computer Methods in Applied Mechanics and Engineering 371 113243 (2020)
DOI: 10.1016/j.cma.2020.113243
See this article

Domain decomposition algorithms for mixed methods for second-order elliptic problems

Zhangxin Chen, Richard Ewing and Raytcho Lazarov
Mathematics of Computation 65 (214) 467 (1996)
DOI: 10.1090/S0025-5718-96-00703-X
See this article

Optimal Preconditioning for Raviart--Thomas Mixed Formulation of Second-Order Elliptic Problems

Catherine Elizabeth Powell and David Silvester
SIAM Journal on Matrix Analysis and Applications 25 (3) 718 (2003)
DOI: 10.1137/S0895479802404428
See this article

Multigrid methods for saddle point problems: Darcy systems

Susanne C. Brenner, Duk-Soon Oh and Li-Yeng Sung
Numerische Mathematik 138 (2) 437 (2018)
DOI: 10.1007/s00211-017-0911-9
See this article

Multilevel iterative solution and adaptive mesh refinement for mixed finite element discretizations

Ronald H.W. Hoppe and Barbara Wohlmuth
Applied Numerical Mathematics 23 (1) 97 (1997)
DOI: 10.1016/S0168-9274(96)00063-3
See this article

Decoupling Three-Dimensional Mixed Problems Using Divergence-Free Finite Elements

Robert Scheichl
SIAM Journal on Scientific Computing 23 (5) 1752 (2002)
DOI: 10.1137/S1064827500375886
See this article

An Application of the Abstract Multilevel Theory to Nonconforming Finite Element Methods

Panayot S. Vassilevski and Junping Wang
SIAM Journal on Numerical Analysis 32 (1) 235 (1995)
DOI: 10.1137/0732008
See this article

Preconditioning Mixed Finite Element Saddle-point Elliptic Problems

Panayot S. Vassilevski and Raytcho D. Lazarov
Numerical Linear Algebra with Applications 3 (1) 1 (1996)
DOI: 10.1002/(SICI)1099-1506(199601/02)3:1<1::AID-NLA67>3.0.CO;2-E
See this article

Design and implementation of a multiscale mixed method based on a nonoverlapping domain decomposition procedure

A. Francisco, V. Ginting, F. Pereira and J. Rigelo
Mathematics and Computers in Simulation 99 125 (2014)
DOI: 10.1016/j.matcom.2013.04.022
See this article

Adaptive Multilevel Techniques for Mixed Finite Element Discretizations of Elliptic Boundary Value Problems

Ronald H. W. Hoppe and Barbara Wohlmuth
SIAM Journal on Numerical Analysis 34 (4) 1658 (1997)
DOI: 10.1137/S0036142994276992
See this article