The Citing articles tool gives a list of articles citing the current article. The citing articles come from EDP Sciences database, as well as other publishers participating in CrossRef Cited-by Linking Program . You can set up your personal account to receive an email alert each time this article is cited by a new article (see the menu on the right-hand side of the abstract page).
Cited article:
E. Curtis , E. Mooers , J. Morrow
ESAIM: M2AN, 28 7 (1994) 781-814
Published online: 2017-01-31
This article has been cited by the following article(s):
29 articles
Tri Lai 110 293 (2024) https://doi.org/10.1090/pspum/110/02020
Stable recovery of piecewise constant conductance on spider networks
Á. Carmona, A. M. Encinas, M. J. Jiménez and Á. Samperio International Journal of Computer Mathematics 101 (11) 1237 (2024) https://doi.org/10.1080/00207160.2024.2385631
The Twist for Electrical Networks and the Inverse Problem
Terrence George International Mathematics Research Notices 2024 (8) 7001 (2024) https://doi.org/10.1093/imrn/rnad307
Multiplicity of solutions for the discrete boundary value problem involving the p-Laplacian
Abdelrachid El Amrouss and Omar Hammouti Arab Journal of Mathematical Sciences 29 (1) 73 (2023) https://doi.org/10.1108/AJMS-02-2021-0050
Shivanagouda Biradar and Deepak U.Patil 1 (2023) https://doi.org/10.23919/ECC57647.2023.10178145
A Calderón type inverse problem for tree graphs
Hannes Gernandt and Jonathan Rohleder Linear Algebra and its Applications 646 29 (2022) https://doi.org/10.1016/j.laa.2022.03.018
Shivanagouda Biradar and Deepak U. Patil 379 (2022) https://doi.org/10.1109/ICC56513.2022.10093371
Inverse Spectral and Scattering Theory
Hiroshi Isozaki SpringerBriefs in Mathematical Physics, Inverse Spectral and Scattering Theory 38 113 (2020) https://doi.org/10.1007/978-981-15-8199-1_5
Proof of a conjecture of Kenyon and Wilson on semicontiguous minors
Tri Lai Journal of Combinatorial Theory, Series A 161 134 (2019) https://doi.org/10.1016/j.jcta.2018.07.008
Inverse Scattering for Schrödinger Operators on Perturbed Lattices
Kazunori Ando, Hiroshi Isozaki and Hisashi Morioka Annales Henri Poincaré 19 (11) 3397 (2018) https://doi.org/10.1007/s00023-018-0721-3
Algebraic Properties of Generalized Graph Laplacians: Resistor Networks, Critical Groups, and Homological Algebra
David Jekel, Avi Levy, Will Dana, Austin Stromme and Collin Litterell SIAM Journal on Discrete Mathematics 32 (2) 1040 (2018) https://doi.org/10.1137/16M1072607
A discrete Liouville identity for numerical reconstruction of Schrödinger potentials
Liliana Borcea, Fernando Guevara Vasquez and Alexander V. Mamonov Inverse Problems & Imaging 11 (4) 623 (2017) https://doi.org/10.3934/ipi.2017029
The Space of Circular Planar Electrical Networks
Richard W. Kenyon and David B. Wilson SIAM Journal on Discrete Mathematics 31 (1) 1 (2017) https://doi.org/10.1137/140997798
Optical tomography on graphs
Francis J Chung, Anna C Gilbert, Jeremy G Hoskins and John C Schotland Inverse Problems 33 (5) 055016 (2017) https://doi.org/10.1088/1361-6420/aa66d1
On the Solvability of the Discrete Conductivity and Schrödinger Inverse Problems
Justin Boyer, Jack J. Garzella and Fernando Guevara Vasquez SIAM Journal on Applied Mathematics 76 (3) 1053 (2016) https://doi.org/10.1137/15M1043479
DISCRETE EVOLUTION EQUATIONS ON NETWORKS AND A UNIQUE IDENTIFIABILITY OF THEIR WEIGHTS
Soon-Yeong Chung Journal of the Korean Mathematical Society 53 (5) 1133 (2016) https://doi.org/10.4134/JKMS.j150449
Inverse problems and invisibility cloaking for FEM models and resistor networks
Matti Lassas, Mikko Salo and Leo Tzou Mathematical Models and Methods in Applied Sciences 25 (02) 309 (2015) https://doi.org/10.1142/S0218202515500116
Overdetermined partial boundary value problems on finite networks
C. Araúz, A. Carmona and A.M. Encinas Journal of Mathematical Analysis and Applications 423 (1) 191 (2015) https://doi.org/10.1016/j.jmaa.2014.09.025
Inverse boundary value problems for discrete Schrödinger operators on the multi-dimensional square lattice
Hisashi Morioka Inverse Problems & Imaging 5 (3) 715 (2011) https://doi.org/10.3934/ipi.2011.5.715
Positive solutions for discrete boundary value problems involving the p-Laplacian with potential terms
Jea-Hyun Park and Soon-Yeong Chung Computers & Mathematics with Applications 61 (1) 17 (2011) https://doi.org/10.1016/j.camwa.2010.10.026
THE p-LAPLACIAN OPERATORS WITH POTENTIAL TERMS
Soon-Yeong Chung and Hee-Soo Lee Communications of the Korean Mathematical Society 26 (4) 591 (2011) https://doi.org/10.4134/CKMS.2011.26.4.591
The Dirichlet boundary value problems forp-Schrödinger operators on finite networks
Jea-Hyun Park and Soon-Yeong Chung Journal of Difference Equations and Applications 17 (05) 795 (2011) https://doi.org/10.1080/10236190903376204
Circular resistor networks for electrical impedance tomography with partial boundary measurements
L Borcea, V Druskin and A V Mamonov Inverse Problems 26 (4) 045010 (2010) https://doi.org/10.1088/0266-5611/26/4/045010
Pyramidal resistor networks for electrical impedance tomography with partial boundary measurements
L Borcea, V Druskin, A V Mamonov and F Guevara Vasquez Inverse Problems 26 (10) 105009 (2010) https://doi.org/10.1088/0266-5611/26/10/105009
Electrical impedance tomography with resistor networks
Liliana Borcea, Vladimir Druskin and Fernando Guevara Vasquez Inverse Problems 24 (3) 035013 (2008) https://doi.org/10.1088/0266-5611/24/3/035013
$\omega$-Harmonic Functions and Inverse Conductivity Problems on Networks
Soon-Yeong Chung and Carlos A. Berenstein SIAM Journal on Applied Mathematics 65 (4) 1200 (2005) https://doi.org/10.1137/S0036139903432743
Discrete and Continuous Dirichlet-to-Neumann Maps in the Layered Case
David V. Ingerman SIAM Journal on Mathematical Analysis 31 (6) 1214 (2000) https://doi.org/10.1137/S0036141097326581
Circular planar graphs and resistor networks
E.B. Curtis, D. Ingerman and J.A. Morrow Linear Algebra and its Applications 283 (1-3) 115 (1998) https://doi.org/10.1016/S0024-3795(98)10087-3
On a Characterization of the Kernel of the Dirichlet-to-Neumann Map for a Planar Region
David Ingerman and James A. Morrow SIAM Journal on Mathematical Analysis 29 (1) 106 (1998) https://doi.org/10.1137/S0036141096300483