Articles citing this article

The Citing articles tool gives a list of articles citing the current article.
The citing articles come from EDP Sciences database, as well as other publishers participating in CrossRef Cited-by Linking Program. You can set up your personal account to receive an email alert each time this article is cited by a new article (see the menu on the right-hand side of the abstract page).

Cited article:

Mathematical derivation of a Reynolds equation for magneto-micropolar fluid flows through a thin domain

María Anguiano and Francisco Javier Suárez-Grau
Zeitschrift für angewandte Mathematik und Physik 75 (1) (2024)
https://doi.org/10.1007/s00033-023-02169-5

Transmission problem between two Herschel-Bulkley fluids in thin layer

Saf Salim, Farid Messelmi and Kaddour Mosbah
Studia Universitatis Babes-Bolyai Matematica 68 (3) 663 (2023)
https://doi.org/10.24193/subbmath.2023.3.14

Homogenization of the non-isothermal, non-Newtonian fluid flow in a thin domain with oscillating boundary

Jean Carlos Nakasato and Igor Pažanin
Zeitschrift für angewandte Mathematik und Physik 74 (6) (2023)
https://doi.org/10.1007/s00033-023-02105-7

On flow of power-law fluids between adjacent surfaces: Why is it possible to derive a Reynolds-type equation for pressure-driven flow, but not for shear-driven flow?

Andreas Almqvist, Evgeniya Burtseva, Kumbakonam Rajagopal and Peter Wall
Applications in Engineering Science 15 100145 (2023)
https://doi.org/10.1016/j.apples.2023.100145

Lower-Dimensional Nonlinear Brinkman’s Law for Non-Newtonian Flows in a Thin Porous Medium

María Anguiano and Francisco J. Suárez-Grau
Mediterranean Journal of Mathematics 18 (4) (2021)
https://doi.org/10.1007/s00009-021-01814-5

Analysis of the Roughness Regimes for Micropolar Fluids via Homogenization

Francisco J. Suárez-Grau
Bulletin of the Malaysian Mathematical Sciences Society 44 (3) 1613 (2021)
https://doi.org/10.1007/s40840-020-01027-1

Nonlinear Reynolds equations for non-Newtonian thin-film fluid flows over a rough boundary

María Anguiano and Francisco Javier Suárez-Grau
IMA Journal of Applied Mathematics 84 (1) 63 (2019)
https://doi.org/10.1093/imamat/hxy052

Homogenization of a non-stationary non-Newtonian flow in a porous medium containing a thin fissure

MARÍA ANGUIANO
European Journal of Applied Mathematics 30 (2) 248 (2019)
https://doi.org/10.1017/S0956792518000049

Homogenization of an incompressible non-Newtonian flow through a thin porous medium

María Anguiano and Francisco Javier Suárez-Grau
Zeitschrift für angewandte Mathematik und Physik 68 (2) (2017)
https://doi.org/10.1007/s00033-017-0790-z

Phase-field modeling of proppant-filled fractures in a poroelastic medium

Sanghyun Lee, Andro Mikelić, Mary F. Wheeler and Thomas Wick
Computer Methods in Applied Mechanics and Engineering 312 509 (2016)
https://doi.org/10.1016/j.cma.2016.02.008

Asymptotic behavior of a non-Newtonian flow in a thin domain with Navier law on a rough boundary

F.J. Suárez-Grau
Nonlinear Analysis: Theory, Methods & Applications 117 99 (2015)
https://doi.org/10.1016/j.na.2015.01.013

On a non-isothermal, non-Newtonian lubrication problem with Tresca law: Existence and the behavior of weak solutions

Mahdi Boukrouche and Rachid El Mir
Nonlinear Analysis: Real World Applications 9 (2) 674 (2008)
https://doi.org/10.1016/j.nonrwa.2006.12.012

Effective Equations Modeling the Flow of a Viscous Incompressible Fluid through a Long Elastic Tube Arising in the Study of Blood Flow through Small Arteries

Suncica Canic and Andro Mikelic
SIAM Journal on Applied Dynamical Systems 2 (3) 431 (2003)
https://doi.org/10.1137/S1111111102411286

Filtration in Porous Media and Industrial Application

Andro Mikelić
Lecture Notes in Mathematics, Filtration in Porous Media and Industrial Application 1734 127 (2000)
https://doi.org/10.1007/BFb0103977