The Citing articles tool gives a list of articles citing the current article. The citing articles come from EDP Sciences database, as well as other publishers participating in CrossRef Cited-by Linking Program . You can set up your personal account to receive an email alert each time this article is cited by a new article (see the menu on the right-hand side of the abstract page).
Cited article:
Christine Bernardi , Frédéric Hecht , Rüdiger Verfürth
ESAIM: M2AN, 43 6 (2009) 1185-1201
Published online: 2009-08-21
This article has been cited by the following article(s):
22 articles
The Navier–Stokes–Voigt equations with position-dependent slip boundary conditions
Evgenii S. Baranovskii Zeitschrift für angewandte Mathematik und Physik 74 (1) (2023) https://doi.org/10.1007/s00033-022-01881-y
Augmented spectral formulation for the Stokes problem with variable viscosity and mixed boundary conditions
C. Bousbiat, Y. Daikh, S. Maarouf and D. Yakoubi Calcolo 60 (3) (2023) https://doi.org/10.1007/s10092-023-00530-8
A Posteriori Error Estimates for Darcy–Forchheimer’s Problem
Toni Sayah, Georges Semaan and Faouzi Triki Computational Methods in Applied Mathematics 23 (2) 517 (2023) https://doi.org/10.1515/cmam-2022-0047
A posteriori error estimates for the large eddy simulation applied to stationary Navier–Stokes equations
Ghina Nassreddine, Pascal Omnes and Toni Sayah Numerical Methods for Partial Differential Equations 38 (5) 1468 (2022) https://doi.org/10.1002/num.22850
An algorithm for solving the Navier–Stokes problem with mixed boundary conditions
Mohamed Abdelwahed, Nejmeddine Chorfi, Najeh Mezghani and Henda Ouertani Boundary Value Problems 2022 (1) (2022) https://doi.org/10.1186/s13661-022-01678-y
Spectral discretization of the time-dependent Navier-Stokes problem with mixed boundary conditions
Mohamed Abdelwahed and Nejmeddine Chorfi Advances in Nonlinear Analysis 11 (1) 1447 (2022) https://doi.org/10.1515/anona-2022-0253
Equations of Motion for Incompressible Viscous Fluids
Tujin Kim and Daomin Cao Advances in Mathematical Fluid Mechanics, Equations of Motion for Incompressible Viscous Fluids 41 (2021) https://doi.org/10.1007/978-3-030-78659-5_2
Enhanced algorithms for solving the spectral discretization of the vorticity–velocity–pressure formulation of the Navier–Stokes problem
Mohamed Abdelwahed, Nejmeddine Chorfi and Henda Ouertani Boundary Value Problems 2021 (1) (2021) https://doi.org/10.1186/s13661-021-01578-7
Equations of Motion for Incompressible Viscous Fluids
Tujin Kim and Daomin Cao Advances in Mathematical Fluid Mechanics, Equations of Motion for Incompressible Viscous Fluids 83 (2021) https://doi.org/10.1007/978-3-030-78659-5_3
A posteriori error estimates for the Brinkman–Darcy–Forchheimer problem
Toni Sayah Computational and Applied Mathematics 40 (7) (2021) https://doi.org/10.1007/s40314-021-01647-8
Resolution and implementation of the nonstationary vorticity velocity pressure formulation of the Navier–Stokes equations
Mohamed Abdelwahed, Ebtisam Alharbi, Nejmeddine Chorfi and Henda Ouertani Boundary Value Problems 2020 (1) (2020) https://doi.org/10.1186/s13661-020-01464-8
A posteriori analysis of the Newton method applied to the Navier–Stokes problem
Jad Dakroub, Joanna Faddoul and Toni Sayah Journal of Applied Mathematics and Computing 63 (1-2) 411 (2020) https://doi.org/10.1007/s12190-020-01323-w
Spectral discretization of time-dependent vorticity–velocity–pressure formulation of the Navier–Stokes equations
Mohamed Abdelwahed and Nejmeddine Chorfi Boundary Value Problems 2020 (1) (2020) https://doi.org/10.1186/s13661-020-01448-8
On the weak solutions to steady Navier-Stokes equations with mixed boundary conditions
Yanren Hou and Shuaichao Pei Mathematische Zeitschrift 291 (1-2) 47 (2019) https://doi.org/10.1007/s00209-018-2072-7
A posteriori error estimates for Darcy’s problem coupled with the heat equation
Séréna Dib, Vivette Girault, Frédéric Hecht and Toni Sayah ESAIM: Mathematical Modelling and Numerical Analysis 53 (6) 2121 (2019) https://doi.org/10.1051/m2an/2019049
Spectral discretization of the Navier–Stokes problem with mixed boundary conditions
Yasmina Daikh and Driss Yakoubi Applied Numerical Mathematics 118 33 (2017) https://doi.org/10.1016/j.apnum.2017.02.002
Mixed Boundary Value Problems for Stationary Magnetohydrodynamic Equations of a Viscous Heat-Conducting Fluid
Gennady Alekseev Journal of Mathematical Fluid Mechanics 18 (3) 591 (2016) https://doi.org/10.1007/s00021-016-0253-x
A posteriorianalysis of iterative algorithms for Navier–Stokes problem
Christine Bernardi, Jad Dakroub, Gihane Mansour and Toni Sayah ESAIM: Mathematical Modelling and Numerical Analysis 50 (4) 1035 (2016) https://doi.org/10.1051/m2an/2015062
Some properties on the surfaces of vector fields and its application to the Stokes and Navier–Stokes problems with mixed boundary conditions
Tujin Kim and Daomin Cao Nonlinear Analysis: Theory, Methods & Applications 113 94 (2015) https://doi.org/10.1016/j.na.2014.09.017
A posteriori error analysis of the time dependent Navier–Stokes equations with mixed boundary conditions
Christine Bernardi and Toni Sayah SeMA Journal 69 (1) 1 (2015) https://doi.org/10.1007/s40324-015-0033-1
Finite Element Discretization of the Stokes and Navier--Stokes Equations with Boundary Conditions on the Pressure
Christine Bernardi, Tomás Chacón Rebollo and Driss Yakoubi SIAM Journal on Numerical Analysis 53 (3) 1256 (2015) https://doi.org/10.1137/140972299
A new defect‐correction method for the stationary Navier–Stokes equations based on local Gauss integration
Pengzhan Huang, Yinnian He and Xinlong Feng Mathematical Methods in the Applied Sciences 35 (9) 1033 (2012) https://doi.org/10.1002/mma.1618