The Citing articles tool gives a list of articles citing the current article. The citing articles come from EDP Sciences database, as well as other publishers participating in CrossRef Cited-by Linking Program . You can set up your personal account to receive an email alert each time this article is cited by a new article (see the menu on the right-hand side of the abstract page).
Cited article:
Andreas Prohl , Markus Schmuck
ESAIM: M2AN, 44 3 (2010) 531-571
Published online: 2010-02-23
This article has been cited by the following article(s):
37 articles
Convergence and superconvergence analysis for a mass conservative, energy stable and linearized BDF2 scheme of the Poisson–Nernst–Planck equations
Minghao Li, Dongyang Shi and Zhenzhen Li Communications in Nonlinear Science and Numerical Simulation 140 108351 (2025) https://doi.org/10.1016/j.cnsns.2024.108351
A linear, second-order accurate, positivity-preserving and unconditionally energy stable scheme for the Navier–Stokes–Poisson–Nernst–Planck system
Mingyang Pan, Sifu Liu, Wenxing Zhu, Fengyu Jiao and Dongdong He Communications in Nonlinear Science and Numerical Simulation 131 107873 (2024) https://doi.org/10.1016/j.cnsns.2024.107873
Error estimates for the finite element method of the Navier-Stokes-Poisson-Nernst-Planck equations
Minghao Li and Zhenzhen Li Applied Numerical Mathematics 197 186 (2024) https://doi.org/10.1016/j.apnum.2023.11.012
Banach spaces-based mixed finite element methods for the coupled Navier–Stokes and Poisson–Nernst–Planck equations
Claudio I. Correa, Gabriel N. Gatica, Esteban Henríquez, Ricardo Ruiz-Baier and Manuel Solano Calcolo 61 (2) (2024) https://doi.org/10.1007/s10092-024-00584-2
Efficiently high-order time-stepping R-GSAV schemes for the Navier–Stokes–Poisson–Nernst–Planck equations
Yuyu He and Hongtao Chen Physica D: Nonlinear Phenomena 466 134233 (2024) https://doi.org/10.1016/j.physd.2024.134233
Analysis and Numerical Approximation of Energy-Variational Solutions to the Ericksen–Leslie Equations
Robert Lasarzik and Maximilian E. V. Reiter Acta Applicandae Mathematicae 184 (1) (2023) https://doi.org/10.1007/s10440-023-00563-9
Optimal Error Estimates of Coupled and Divergence-Free Virtual Element Methods for the Poisson–Nernst–Planck/Navier–Stokes Equations and Applications in Electrochemical Systems
Mehdi Dehghan, Zeinab Gharibi and Ricardo Ruiz-Baier Journal of Scientific Computing 94 (3) (2023) https://doi.org/10.1007/s10915-023-02126-4
New mixed finite element methods for the coupled Stokes and Poisson–Nernst–Planck equations in Banach spaces
Claudio I. Correa, Gabriel N. Gatica and Ricardo Ruiz-Baier ESAIM: Mathematical Modelling and Numerical Analysis 57 (3) 1511 (2023) https://doi.org/10.1051/m2an/2023024
Efficient time-stepping schemes for the Navier-Stokes-Nernst-Planck-Poisson equations
Xiaolan Zhou and Chuanju Xu Computer Physics Communications 289 108763 (2023) https://doi.org/10.1016/j.cpc.2023.108763
Stable and decoupled schemes for an electrohydrodynamics model
Hui Yao, Chuanju Xu and Mejdi Azaiez Mathematics and Computers in Simulation 206 689 (2023) https://doi.org/10.1016/j.matcom.2022.12.007
Linear, second-order, unconditionally energy stable scheme for an electrohydrodynamic model with variable density and conductivity
Mingyang Pan, Chengxing Fu, Wenxing Zhu, Fengyu Jiao and Dongdong He Communications in Nonlinear Science and Numerical Simulation 125 107329 (2023) https://doi.org/10.1016/j.cnsns.2023.107329
Electroosmosis in nanopores: computational methods and technological applications
Alberto Gubbiotti, Matteo Baldelli, Giovanni Di Muccio, et al. Advances in Physics: X 7 (1) (2022) https://doi.org/10.1080/23746149.2022.2036638
Mixed Finite Element Method for Modified Poisson–Nernst–Planck/Navier–Stokes Equations
Mingyan He and Pengtao Sun Journal of Scientific Computing 87 (3) (2021) https://doi.org/10.1007/s10915-021-01478-z
Numerical analysis for nematic electrolytes
Ľubomír Baňas, Robert Lasarzik and Andreas Prohl IMA Journal of Numerical Analysis 41 (3) 2186 (2021) https://doi.org/10.1093/imanum/draa082
Numerical analysis of locally conservative weak Galerkin dual-mixed finite element method for the time-dependent Poisson–Nernst–Planck system
Zeinab Gharibi, Mehdi Dehghan and Mostafa Abbaszadeh Computers & Mathematics with Applications 92 88 (2021) https://doi.org/10.1016/j.camwa.2021.03.008
Transient electrohydrodynamic flow with concentration-dependent fluid properties: Modelling and energy-stable numerical schemes
Gaute Linga, Asger Bolet and Joachim Mathiesen Journal of Computational Physics 412 109430 (2020) https://doi.org/10.1016/j.jcp.2020.109430
A coupled finite-volume solver for numerical simulation of electrically-driven flows
F. Pimenta and M.A. Alves Computers & Fluids 193 104279 (2019) https://doi.org/10.1016/j.compfluid.2019.104279
A Linearized Local Conservative Mixed Finite Element Method for Poisson–Nernst–Planck Equations
Huadong Gao and Pengtao Sun Journal of Scientific Computing 77 (2) 793 (2018) https://doi.org/10.1007/s10915-018-0727-5
Mixed finite element analysis for the Poisson–Nernst–Planck/Stokes coupling
Mingyan He and Pengtao Sun Journal of Computational and Applied Mathematics 341 61 (2018) https://doi.org/10.1016/j.cam.2018.04.003
Newton Solvers for Drift-Diffusion and Electrokinetic Equations
Arthur Bousquet, Xiaozhe Hu, Maximilian S. Metti and Jinchao Xu SIAM Journal on Scientific Computing 40 (3) B982 (2018) https://doi.org/10.1137/17M1146956
Efficient Time-Stepping/Spectral Methods for the Navier-Stokes-Nernst-Planck-Poisson Equations
Xiaoling Liu and Chuanju Xu Communications in Computational Physics 21 (5) 1408 (2017) https://doi.org/10.4208/cicp.191015.260816a
Adaptive and iterative methods for simulations of nanopores with the PNP–Stokes equations
Gregor Mitscha-Baude, Andreas Buttinger-Kreuzhuber, Gerhard Tulzer and Clemens Heitzinger Journal of Computational Physics 338 452 (2017) https://doi.org/10.1016/j.jcp.2017.02.072
Linearized Conservative Finite Element Methods for the Nernst–Planck–Poisson Equations
Huadong Gao and Dongdong He Journal of Scientific Computing 72 (3) 1269 (2017) https://doi.org/10.1007/s10915-017-0400-4
Error analysis of mixed finite element method for Poisson‐Nernst‐Planck system
Mingyan He and Pengtao Sun Numerical Methods for Partial Differential Equations 33 (6) 1924 (2017) https://doi.org/10.1002/num.22170
A survey on properties of Nernst–Planck–Poisson system. Application to ionic transport in porous media
Gérard Gagneux and Olivier Millet Applied Mathematical Modelling 40 (2) 846 (2016) https://doi.org/10.1016/j.apm.2015.06.013
Energetically stable discretizations for charge transport and electrokinetic models
Maximilian S. Metti, Jinchao Xu and Chun Liu Journal of Computational Physics 306 1 (2016) https://doi.org/10.1016/j.jcp.2015.10.053
Error analysis of finite element method for Poisson–Nernst–Planck equations
Yuzhou Sun, Pengtao Sun, Bin Zheng and Guang Lin Journal of Computational and Applied Mathematics 301 28 (2016) https://doi.org/10.1016/j.cam.2016.01.028
Homogenization of the Poisson--Nernst--Planck equations for Ion Transport in Charged Porous Media
Markus Schmuck and Martin Z. Bazant SIAM Journal on Applied Mathematics 75 (3) 1369 (2015) https://doi.org/10.1137/140968082
Comparison and numerical treatment of generalised Nernst–Planck models
Jürgen Fuhrmann Computer Physics Communications 196 166 (2015) https://doi.org/10.1016/j.cpc.2015.06.004
A DIFFUSE INTERFACE MODEL FOR ELECTROWETTING WITH MOVING CONTACT LINES
RICARDO H. NOCHETTO, ABNER J. SALGADO and SHAWN W. WALKER Mathematical Models and Methods in Applied Sciences 24 (01) 67 (2014) https://doi.org/10.1142/S0218202513500474
Homogenization of the Nernst-Planck-Poisson System by Two-Scale Convergence
Gérard Gagneux and Olivier Millet Journal of Elasticity 114 (1) 69 (2014) https://doi.org/10.1007/s10659-013-9427-4
Sur le système de Nernst-Planck-Poisson-Boltzmann résultant de l’homogénéisation par convergence à double échelle
Gérard Gagneux and Olivier Millet Annales de la Faculté des sciences de Toulouse : Mathématiques 23 (1) 1 (2014) https://doi.org/10.5802/afst.1396
Regularity criteria for a mathematical model for the deformation of electrolyte droplets
Jishan Fan, Fucai Li and Gen Nakamura Applied Mathematics Letters 26 (4) 494 (2013) https://doi.org/10.1016/j.aml.2012.12.003
Direct numerical simulation of electroconvective instability and hysteretic current-voltage response of a permselective membrane
Van Sang Pham, Zirui Li, Kian Meng Lim, Jacob K. White and Jongyoon Han Physical Review E 86 (4) (2012) https://doi.org/10.1103/PhysRevE.86.046310
Mathematical study of non-ideal electrostatic correlations in equilibrium electrolytes
Alexandre Ern, Rémi Joubaud and Tony Lelièvre Nonlinearity 25 (6) 1635 (2012) https://doi.org/10.1088/0951-7715/25/6/1635
A stabilized finite element method for the numerical simulation of multi-ion transport in electrochemical systems
Georg Bauer, Volker Gravemeier and Wolfgang A. Wall Computer Methods in Applied Mechanics and Engineering 223-224 199 (2012) https://doi.org/10.1016/j.cma.2012.02.003
Numerical investigation of homogenized Stokes–Nernst–Planck–Poisson systems
Florian Frank, Nadja Ray and Peter Knabner Computing and Visualization in Science 14 (8) 385 (2011) https://doi.org/10.1007/s00791-013-0189-0