Articles citing this article

The Citing articles tool gives a list of articles citing the current article.
The citing articles come from EDP Sciences database, as well as other publishers participating in CrossRef Cited-by Linking Program. You can set up your personal account to receive an email alert each time this article is cited by a new article (see the menu on the right-hand side of the abstract page).

Cited article:

Banach spaces-based mixed finite element methods for the coupled Navier–Stokes and Poisson–Nernst–Planck equations

Claudio I. Correa, Gabriel N. Gatica, Esteban Henríquez, Ricardo Ruiz-Baier and Manuel Solano
Calcolo 61 (2) (2024)
https://doi.org/10.1007/s10092-024-00584-2

Error estimates for the finite element method of the Navier-Stokes-Poisson-Nernst-Planck equations

Minghao Li and Zhenzhen Li
Applied Numerical Mathematics 197 186 (2024)
https://doi.org/10.1016/j.apnum.2023.11.012

Efficiently high-order time-stepping R-GSAV schemes for the Navier–Stokes–Poisson–Nernst–Planck equations

Yuyu He and Hongtao Chen
Physica D: Nonlinear Phenomena 466 134233 (2024)
https://doi.org/10.1016/j.physd.2024.134233

A linear, second-order accurate, positivity-preserving and unconditionally energy stable scheme for the Navier–Stokes–Poisson–Nernst–Planck system

Mingyang Pan, Sifu Liu, Wenxing Zhu, Fengyu Jiao and Dongdong He
Communications in Nonlinear Science and Numerical Simulation 131 107873 (2024)
https://doi.org/10.1016/j.cnsns.2024.107873

Analysis and Numerical Approximation of Energy-Variational Solutions to the Ericksen–Leslie Equations

Robert Lasarzik and Maximilian E. V. Reiter
Acta Applicandae Mathematicae 184 (1) (2023)
https://doi.org/10.1007/s10440-023-00563-9

Optimal Error Estimates of Coupled and Divergence-Free Virtual Element Methods for the Poisson–Nernst–Planck/Navier–Stokes Equations and Applications in Electrochemical Systems

Mehdi Dehghan, Zeinab Gharibi and Ricardo Ruiz-Baier
Journal of Scientific Computing 94 (3) (2023)
https://doi.org/10.1007/s10915-023-02126-4

New mixed finite element methods for the coupled Stokes and Poisson–Nernst–Planck equations in Banach spaces

Claudio I. Correa, Gabriel N. Gatica and Ricardo Ruiz-Baier
ESAIM: Mathematical Modelling and Numerical Analysis 57 (3) 1511 (2023)
https://doi.org/10.1051/m2an/2023024

Efficient time-stepping schemes for the Navier-Stokes-Nernst-Planck-Poisson equations

Xiaolan Zhou and Chuanju Xu
Computer Physics Communications 289 108763 (2023)
https://doi.org/10.1016/j.cpc.2023.108763

Linear, second-order, unconditionally energy stable scheme for an electrohydrodynamic model with variable density and conductivity

Mingyang Pan, Chengxing Fu, Wenxing Zhu, Fengyu Jiao and Dongdong He
Communications in Nonlinear Science and Numerical Simulation 125 107329 (2023)
https://doi.org/10.1016/j.cnsns.2023.107329

Electroosmosis in nanopores: computational methods and technological applications

Alberto Gubbiotti, Matteo Baldelli, Giovanni Di Muccio, et al.
Advances in Physics: X 7 (1) (2022)
https://doi.org/10.1080/23746149.2022.2036638

Numerical analysis of locally conservative weak Galerkin dual-mixed finite element method for the time-dependent Poisson–Nernst–Planck system

Zeinab Gharibi, Mehdi Dehghan and Mostafa Abbaszadeh
Computers & Mathematics with Applications 92 88 (2021)
https://doi.org/10.1016/j.camwa.2021.03.008

Mixed Finite Element Method for Modified Poisson–Nernst–Planck/Navier–Stokes Equations

Mingyan He and Pengtao Sun
Journal of Scientific Computing 87 (3) (2021)
https://doi.org/10.1007/s10915-021-01478-z

Transient electrohydrodynamic flow with concentration-dependent fluid properties: Modelling and energy-stable numerical schemes

Gaute Linga, Asger Bolet and Joachim Mathiesen
Journal of Computational Physics 412 109430 (2020)
https://doi.org/10.1016/j.jcp.2020.109430

Mixed finite element analysis for the Poisson–Nernst–Planck/Stokes coupling

Mingyan He and Pengtao Sun
Journal of Computational and Applied Mathematics 341 61 (2018)
https://doi.org/10.1016/j.cam.2018.04.003

Newton Solvers for Drift-Diffusion and Electrokinetic Equations

Arthur Bousquet, Xiaozhe Hu, Maximilian S. Metti and Jinchao Xu
SIAM Journal on Scientific Computing 40 (3) B982 (2018)
https://doi.org/10.1137/17M1146956

A Linearized Local Conservative Mixed Finite Element Method for Poisson–Nernst–Planck Equations

Huadong Gao and Pengtao Sun
Journal of Scientific Computing 77 (2) 793 (2018)
https://doi.org/10.1007/s10915-018-0727-5

Adaptive and iterative methods for simulations of nanopores with the PNP–Stokes equations

Gregor Mitscha-Baude, Andreas Buttinger-Kreuzhuber, Gerhard Tulzer and Clemens Heitzinger
Journal of Computational Physics 338 452 (2017)
https://doi.org/10.1016/j.jcp.2017.02.072

Efficient Time-Stepping/Spectral Methods for the Navier-Stokes-Nernst-Planck-Poisson Equations

Xiaoling Liu and Chuanju Xu
Communications in Computational Physics 21 (5) 1408 (2017)
https://doi.org/10.4208/cicp.191015.260816a

Error analysis of mixed finite element method for Poisson‐Nernst‐Planck system

Mingyan He and Pengtao Sun
Numerical Methods for Partial Differential Equations 33 (6) 1924 (2017)
https://doi.org/10.1002/num.22170

Linearized Conservative Finite Element Methods for the Nernst–Planck–Poisson Equations

Huadong Gao and Dongdong He
Journal of Scientific Computing 72 (3) 1269 (2017)
https://doi.org/10.1007/s10915-017-0400-4

Error analysis of finite element method for Poisson–Nernst–Planck equations

Yuzhou Sun, Pengtao Sun, Bin Zheng and Guang Lin
Journal of Computational and Applied Mathematics 301 28 (2016)
https://doi.org/10.1016/j.cam.2016.01.028

A survey on properties of Nernst–Planck–Poisson system. Application to ionic transport in porous media

Gérard Gagneux and Olivier Millet
Applied Mathematical Modelling 40 (2) 846 (2016)
https://doi.org/10.1016/j.apm.2015.06.013

Energetically stable discretizations for charge transport and electrokinetic models

Maximilian S. Metti, Jinchao Xu and Chun Liu
Journal of Computational Physics 306 1 (2016)
https://doi.org/10.1016/j.jcp.2015.10.053

Homogenization of the Poisson--Nernst--Planck equations for Ion Transport in Charged Porous Media

Markus Schmuck and Martin Z. Bazant
SIAM Journal on Applied Mathematics 75 (3) 1369 (2015)
https://doi.org/10.1137/140968082

Sur le système de Nernst-Planck-Poisson-Boltzmann résultant de l’homogénéisation par convergence à double échelle

Gérard Gagneux and Olivier Millet
Annales de la Faculté des sciences de Toulouse : Mathématiques 23 (1) 1 (2014)
https://doi.org/10.5802/afst.1396

A DIFFUSE INTERFACE MODEL FOR ELECTROWETTING WITH MOVING CONTACT LINES

RICARDO H. NOCHETTO, ABNER J. SALGADO and SHAWN W. WALKER
Mathematical Models and Methods in Applied Sciences 24 (01) 67 (2014)
https://doi.org/10.1142/S0218202513500474

Regularity criteria for a mathematical model for the deformation of electrolyte droplets

Jishan Fan, Fucai Li and Gen Nakamura
Applied Mathematics Letters 26 (4) 494 (2013)
https://doi.org/10.1016/j.aml.2012.12.003

A stabilized finite element method for the numerical simulation of multi-ion transport in electrochemical systems

Georg Bauer, Volker Gravemeier and Wolfgang A. Wall
Computer Methods in Applied Mechanics and Engineering 223-224 199 (2012)
https://doi.org/10.1016/j.cma.2012.02.003

Direct numerical simulation of electroconvective instability and hysteretic current-voltage response of a permselective membrane

Van Sang Pham, Zirui Li, Kian Meng Lim, Jacob K. White and Jongyoon Han
Physical Review E 86 (4) (2012)
https://doi.org/10.1103/PhysRevE.86.046310

Numerical investigation of homogenized Stokes–Nernst–Planck–Poisson systems

Florian Frank, Nadja Ray and Peter Knabner
Computing and Visualization in Science 14 (8) 385 (2011)
https://doi.org/10.1007/s00791-013-0189-0