Articles citing this article

The Citing articles tool gives a list of articles citing the current article.
The citing articles come from EDP Sciences database, as well as other publishers participating in CrossRef Cited-by Linking Program. You can set up your personal account to receive an email alert each time this article is cited by a new article (see the menu on the right-hand side of the abstract page).

Cited article:

CONVERGENT APPROACHES FOR THE DIRICHLET MONGE-AMPÈRE PROBLEM

Hajri Imen and Fethi Ben Belgacem
Journal of Applied Analysis & Computation 14 (1) 146 (2024)
https://doi.org/10.11948/20230104

Numerical homogenization by an adaptive Fourier spectral method on non-uniform grids using optimal transport

Cédric Bellis and Renaud Ferrier
Computer Methods in Applied Mechanics and Engineering 419 116658 (2024)
https://doi.org/10.1016/j.cma.2023.116658

Adaptive Isogeometric Analysis using optimal transport and their fast solvers

M. Bahari, A. Habbal, A. Ratnani and E. Sonnendrücker
Computer Methods in Applied Mechanics and Engineering 418 116570 (2024)
https://doi.org/10.1016/j.cma.2023.116570

A Convergent Quadrature-Based Method for the Monge–Ampère Equation

Jake Brusca and Brittany Froese Hamfeldt
SIAM Journal on Scientific Computing 45 (3) A1097 (2023)
https://doi.org/10.1137/22M1494658

A C0 linear finite element method for a second‐order elliptic equation in non‐divergence form with Cordes coefficients

Minqiang Xu, Runchang Lin and Qingsong Zou
Numerical Methods for Partial Differential Equations 39 (3) 2244 (2023)
https://doi.org/10.1002/num.22965

Solving the Dirichlet problem for the Monge–Ampère equation using neural networks

Kaj Nyström and Matias Vestberg
Journal of Computational Mathematics and Data Science 8 100080 (2023)
https://doi.org/10.1016/j.jcmds.2023.100080

Designing funicular grids with planar quads using isotropic Linear-Weingarten surfaces

X. Tellier, C. Douthe, O. Baverel and L. Hauswirth
International Journal of Solids and Structures 264 112028 (2023)
https://doi.org/10.1016/j.ijsolstr.2022.112028

Convergent Finite Difference Methods for Fully Nonlinear Elliptic Equations in Three Dimensions

Brittany Froese Hamfeldt and Jacob Lesniewski
Journal of Scientific Computing 90 (1) (2022)
https://doi.org/10.1007/s10915-021-01714-6

Nature’s forms are frilly, flexible, and functional

Kenneth K. Yamamoto, Toby L. Shearman, Erik J. Struckmeyer, John A. Gemmer and Shankar C. Venkataramani
The European Physical Journal E 44 (7) (2021)
https://doi.org/10.1140/epje/s10189-021-00099-6

Adaptive C0 interior penalty methods for Hamilton–Jacobi–Bellman equations with Cordes coefficients

Susanne C. Brenner and Ellya L. Kawecki
Journal of Computational and Applied Mathematics 388 113241 (2021)
https://doi.org/10.1016/j.cam.2020.113241

A convexity enforcing $${C}^{{0}}$$ interior penalty method for the Monge–Ampère equation on convex polygonal domains

Susanne C. Brenner, Li-yeng Sung, Zhiyu Tan and Hongchao Zhang
Numerische Mathematik 148 (3) 497 (2021)
https://doi.org/10.1007/s00211-021-01210-x

Unified mathematical framework for a class of fundamental freeform optical systems

Martijn J. H. Anthonissen, Lotte B. Romijn, Jan H. M. ten Thije Boonkkamp and Wilbert L. IJzerman
Optics Express 29 (20) 31650 (2021)
https://doi.org/10.1364/OE.438920

Mathematical Methods in Image Processing and Inverse Problems

Yangang Chen and Justin W. L. Wan
Springer Proceedings in Mathematics & Statistics, Mathematical Methods in Image Processing and Inverse Problems 360 197 (2021)
https://doi.org/10.1007/978-981-16-2701-9_11

Three ways to solve partial differential equations with neural networks — A review

Jan Blechschmidt and Oliver G. Ernst
GAMM-Mitteilungen 44 (2) (2021)
https://doi.org/10.1002/gamm.202100006

Error estimation for second‐order partial differential equations in nonvariational form

Jan Blechschmidt, Roland Herzog and Max Winkler
Numerical Methods for Partial Differential Equations 37 (3) 2190 (2021)
https://doi.org/10.1002/num.22678

Cascadic Newton’s method for the elliptic Monge–Ampère equation

Qin Li and Zhiyong Liu
International Journal of Wavelets, Multiresolution and Information Processing 18 (03) 2050018 (2020)
https://doi.org/10.1142/S0219691320500186

On Multiscale RBF Collocation Methods for Solving the Monge–Ampère Equation

Zhiyong Liu and Qiuyan Xu
Mathematical Problems in Engineering 2020 1 (2020)
https://doi.org/10.1155/2020/1748037

A note on the Monge–Ampère type equations with general source terms

Weifeng Qiu and Lan Tang
Mathematics of Computation 89 (326) 2675 (2020)
https://doi.org/10.1090/mcom/3554

A Newton Div-Curl Least-Squares Finite Element Method for the Elliptic Monge–Ampère Equation

Chad R. Westphal
Computational Methods in Applied Mathematics 19 (3) 631 (2019)
https://doi.org/10.1515/cmam-2018-0196

Pointwise rates of convergence for the Oliker–Prussner method for the Monge–Ampère equation

Ricardo H. Nochetto and Wujun Zhang
Numerische Mathematik 141 (1) 253 (2019)
https://doi.org/10.1007/s00211-018-0988-9

Convergent Two-Scale Filtered Scheme for the Monge--Ampère Equation

Ricardo H. Nochetto and Dimitrios Ntogkas
SIAM Journal on Scientific Computing 41 (2) B295 (2019)
https://doi.org/10.1137/18M1191634

Iterative wavefront tailoring to simplify freeform optical design for prescribed irradiance

Zexin Feng, Dewen Cheng and Yongtian Wang
Optics Letters 44 (9) 2274 (2019)
https://doi.org/10.1364/OL.44.002274

Multigrid methods for convergent mixed finite difference scheme for Monge–Ampère equation

Yangang Chen and Justin W. L. Wan
Computing and Visualization in Science 22 (1-4) 27 (2019)
https://doi.org/10.1007/s00791-017-0284-8

A Finite Element/Operator-Splitting Method for the Numerical Solution of the Two Dimensional Elliptic Monge–Ampère Equation

Roland Glowinski, Hao Liu, Shingyu Leung and Jianliang Qian
Journal of Scientific Computing 79 (1) 1 (2019)
https://doi.org/10.1007/s10915-018-0839-y

Higher-Order Adaptive Finite Difference Methods for Fully Nonlinear Elliptic Equations

Brittany Froese Hamfeldt and Tiago Salvador
Journal of Scientific Computing 75 (3) 1282 (2018)
https://doi.org/10.1007/s10915-017-0586-5

Monotone Mixed Finite Difference Scheme for Monge–Ampère Equation

Yangang Chen, Justin W. L. Wan and Jessey Lin
Journal of Scientific Computing 76 (3) 1839 (2018)
https://doi.org/10.1007/s10915-018-0685-y

Optimal-Transport--Based Mesh Adaptivity on the Plane and Sphere Using Finite Elements

Andrew T. T. McRae, Colin J. Cotter and Chris J. Budd
SIAM Journal on Scientific Computing 40 (2) A1121 (2018)
https://doi.org/10.1137/16M1109515

A Least-Squares/Relaxation Method for the Numerical Solution of the Three-Dimensional Elliptic Monge–Ampère Equation

Alexandre Caboussat, Roland Glowinski and Dimitrios Gourzoulidis
Journal of Scientific Computing 77 (1) 53 (2018)
https://doi.org/10.1007/s10915-018-0698-6

A multigrid scheme for 3D Monge–Ampère equations

Jun Liu, Brittany D. Froese, Adam M. Oberman and Mingqing Xiao
International Journal of Computer Mathematics 94 (9) 1850 (2017)
https://doi.org/10.1080/00207160.2016.1247443

Solving the 2-D elliptic Monge-Ampère equation by a Kansa’s method

Qin Li and Zhi-yong Liu
Acta Mathematicae Applicatae Sinica, English Series 33 (2) 269 (2017)
https://doi.org/10.1007/s10255-017-0656-3

Numerical methods for the 2-Hessian elliptic partial differential equation

Brittany D. Froese, Adam M. Oberman and Tiago Salvador
IMA Journal of Numerical Analysis 37 (1) 209 (2017)
https://doi.org/10.1093/imanum/drw007

An approximation scheme for the Kantorovich-Rubinstein problem on compact spaces

M. Lorena Avendaño-Garrido, J. Rigoberto Gabriel-Argüelles, Ligia-Torres Quintana and Juan González-Hernández González
Journal of Numerical Mathematics (2017)
https://doi.org/10.1515/jnma-2017-0008

Inferring morphology and strength of magnetic fields from proton radiographs

Carlo Graziani, Petros Tzeferacos, Donald Q. Lamb and Chikang Li
Review of Scientific Instruments 88 (12) (2017)
https://doi.org/10.1063/1.5013029

A study of surface semi-geostrophic turbulence: freely decaying dynamics

Francesco Ragone and Gualtiero Badin
Journal of Fluid Mechanics 792 740 (2016)
https://doi.org/10.1017/jfm.2016.116

Mesh adaptation on the sphere using optimal transport and the numerical solution of a Monge–Ampère type equation

Hilary Weller, Philip Browne, Chris Budd and Mike Cullen
Journal of Computational Physics 308 102 (2016)
https://doi.org/10.1016/j.jcp.2015.12.018

Numerical resolution of Euler equations through semi-discrete optimal transport

Jean-Marie Mirebeau
Journées équations aux dérivées partielles 1 (2016)
https://doi.org/10.5802/jedp.636

Optimal Transport for Applied Mathematicians

Filippo Santambrogio
Progress in Nonlinear Differential Equations and Their Applications, Optimal Transport for Applied Mathematicians 87 249 (2015)
https://doi.org/10.1007/978-3-319-20828-2_7

Optimal Transport for Applied Mathematicians

Filippo Santambrogio
Progress in Nonlinear Differential Equations and Their Applications, Optimal Transport for Applied Mathematicians 87 219 (2015)
https://doi.org/10.1007/978-3-319-20828-2_6

Solving the Monge–Ampère equations for the inverse reflector problem

Kolja Brix, Yasemin Hafizogullari and Andreas Platen
Mathematical Models and Methods in Applied Sciences 25 (05) 803 (2015)
https://doi.org/10.1142/S0218202515500190

Multi-physics optimal transportation and image interpolation

Romain Hug, Emmanuel Maitre and Nicolas Papadakis
ESAIM: Mathematical Modelling and Numerical Analysis 49 (6) 1671 (2015)
https://doi.org/10.1051/m2an/2015038

Finite element methods for fully nonlinear second order PDEs based on a discrete Hessian with applications to the Monge–Ampère equation

Michael Neilan
Journal of Computational and Applied Mathematics 263 351 (2014)
https://doi.org/10.1016/j.cam.2013.12.027

Modeling, Simulation and Optimization for Science and Technology

Alexandre Caboussat
Computational Methods in Applied Sciences, Modeling, Simulation and Optimization for Science and Technology 34 23 (2014)
https://doi.org/10.1007/978-94-017-9054-3_2

An iterative meshfree method for the elliptic monge–ampère equation in 2D

Zhiyong Liu and Yinnian He
Numerical Methods for Partial Differential Equations 30 (5) 1507 (2014)
https://doi.org/10.1002/num.21849

The Monge–Ampère trajectory correction for semi-Lagrangian schemes

Jean-François Cossette, Piotr K. Smolarkiewicz and Paul Charbonneau
Journal of Computational Physics 274 208 (2014)
https://doi.org/10.1016/j.jcp.2014.05.016

Focal-plane irradiance tailoring using the concept of Woofer-Tweeter deformable mirrors

Zexin Feng, Lei Huang and Mali Gong
Optics Express 22 (8) 8871 (2014)
https://doi.org/10.1364/OE.22.008871

Convergent Filtered Schemes for the Monge--Ampère Partial Differential Equation

Brittany D. Froese and Adam M. Oberman
SIAM Journal on Numerical Analysis 51 (1) 423 (2013)
https://doi.org/10.1137/120875065

Recent Developments in Numerical Methods for Fully Nonlinear Second Order Partial Differential Equations

Xiaobing Feng, Roland Glowinski and Michael Neilan
SIAM Review 55 (2) 205 (2013)
https://doi.org/10.1137/110825960

A least-squares method for the numerical solution of the Dirichlet problem for the elliptic monge − ampère equation in dimension two

Alexandre Caboussat, Roland Glowinski and Danny C. Sorensen
ESAIM: Control, Optimisation and Calculus of Variations 19 (3) 780 (2013)
https://doi.org/10.1051/cocv/2012033

Iterative Scheme for Solving Optimal Transportation Problems Arising in Reflector Design

Tilmann Glimm and Nick Henscheid
ISRN Applied Mathematics 2013 1 (2013)
https://doi.org/10.1155/2013/635263

HIGH-CONTRAST IMAGING WITH AN ARBITRARY APERTURE: ACTIVE COMPENSATION OF APERTURE DISCONTINUITIES

Laurent Pueyo and Colin Norman
The Astrophysical Journal 769 (2) 102 (2013)
https://doi.org/10.1088/0004-637X/769/2/102

A Numerical Method for the Elliptic Monge--Ampère Equation with Transport Boundary Conditions

Brittany D. Froese
SIAM Journal on Scientific Computing 34 (3) A1432 (2012)
https://doi.org/10.1137/110822372

Fast finite difference solvers for singular solutions of the elliptic Monge–Ampère equation

B.D. Froese and A.M. Oberman
Journal of Computational Physics 230 (3) 818 (2011)
https://doi.org/10.1016/j.jcp.2010.10.020

Convergent Finite Difference Solvers for Viscosity Solutions of the Elliptic Monge–Ampère Equation in Dimensions Two and Higher

Brittany D. Froese and Adam M. Oberman
SIAM Journal on Numerical Analysis 49 (4) 1692 (2011)
https://doi.org/10.1137/100803092

The Monge–Ampère equation: Various forms and numerical solution

V. Zheligovsky, O. Podvigina and U. Frisch
Journal of Computational Physics 229 (13) 5043 (2010)
https://doi.org/10.1016/j.jcp.2010.03.025