Articles citing this article

The Citing articles tool gives a list of articles citing the current article.
The citing articles come from EDP Sciences database, as well as other publishers participating in CrossRef Cited-by Linking Program. You can set up your personal account to receive an email alert each time this article is cited by a new article (see the menu on the right-hand side of the abstract page).

Cited article:

A particle method for non-local advection–selection–mutation equations

Frank Ernesto Alvarez and Jules Guilberteau
Mathematical Models and Methods in Applied Sciences 34 (04) 597 (2024)
https://doi.org/10.1142/S0218202524500106

Mathematical modeling of the evolution of resistance and aggressiveness of high-grade serous ovarian cancer from patient CA-125 time series

Kanyarat Jitmana, Jason I. Griffiths, Sian Fereday, Anna DeFazio, David Bowtell, Frederick R. Adler and Dominik Wodarz
PLOS Computational Biology 20 (5) e1012073 (2024)
https://doi.org/10.1371/journal.pcbi.1012073

A comprehensive review of computational cell cycle models in guiding cancer treatment strategies

Chenhui Ma and Evren Gurkan-Cavusoglu
npj Systems Biology and Applications 10 (1) (2024)
https://doi.org/10.1038/s41540-024-00397-7

Mathematical modelling of cancer invasion: Phenotypic transitioning provides insight into multifocal foci formation

Zuzanna Szymańska, Mirosław Lachowicz, Nikolaos Sfakianakis and Mark A.J. Chaplain
Journal of Computational Science 75 102175 (2024)
https://doi.org/10.1016/j.jocs.2023.102175

Optimal control in reducing side effects during and after chemotherapy of solid tumors

Zeinab Joorsara, Seyed Mohammad Hosseini and Sakine Esmaili
Mathematical Methods in the Applied Sciences 47 (11) 8857 (2024)
https://doi.org/10.1002/mma.10049

Ribonucleotide reductase regulatory subunit M2 drives glioblastoma TMZ resistance through modulation of dNTP production

Ella N. Perrault, Jack M. Shireman, Eunus S. Ali, Peiyu Lin, Isabelle Preddy, Cheol Park, Shreya Budhiraja, Shivani Baisiwala, Karan Dixit, C. David James, Dieter H Heiland, Issam Ben-Sahra, Sebastian Pott, Anindita Basu, Jason Miska and Atique U. Ahmed
Science Advances 9 (20) (2023)
https://doi.org/10.1126/sciadv.ade7236

Promoting extinction or minimizing growth? The impact of treatment on trait trajectories in evolving populations

Michael Raatz and Arne Traulsen
Evolution 77 (6) 1408 (2023)
https://doi.org/10.1093/evolut/qpad042

Deep learning approximations for non-local nonlinear PDEs with Neumann boundary conditions

Victor Boussange, Sebastian Becker, Arnulf Jentzen, Benno Kuckuck and Loïc Pellissier
Partial Differential Equations and Applications 4 (6) (2023)
https://doi.org/10.1007/s42985-023-00244-0

A Strategy Utilizing Protein–Protein Interaction Hubs for the Treatment of Cancer Diseases

Nicolas Carels, Domenico Sgariglia, Marcos Guilherme Vieira Junior, Carlyle Ribeiro Lima, Flávia Raquel Gonçalves Carneiro, Gilberto Ferreira da Silva, Fabricio Alves Barbosa da Silva, Rafaela Scardini, Jack Adam Tuszynski, Cecilia Vianna de Andrade, Ana Carolina Monteiro, Marcel Guimarães Martins, Talita Goulart da Silva, Helen Ferraz, Priscilla Vanessa Finotelli, Tiago Albertini Balbino and José Carlos Pinto
International Journal of Molecular Sciences 24 (22) 16098 (2023)
https://doi.org/10.3390/ijms242216098

A phenotype-structured model for the tumour-immune response

Zineb Kaid, Camille Pouchol and Jean Clairambault
Mathematical Modelling of Natural Phenomena 18 22 (2023)
https://doi.org/10.1051/mmnp/2023025

Discrete and continuum models for the coevolutionary dynamics between CD8+ cytotoxic T lymphocytes and tumour cells

Luís Almeida, Chloe Audebert, Emma Leschiera and Tommaso Lorenzi
Mathematical Medicine and Biology: A Journal of the IMA 40 (2) 141 (2023)
https://doi.org/10.1093/imammb/dqac017

Mathematical modeling of therapeutic neural stem cell migration in mouse brain with and without brain tumors

Justin Gomez, Nathanael Holmes, Austin Hansen, et al.
Mathematical Biosciences and Engineering 19 (3) 2592 (2022)
https://doi.org/10.3934/mbe.2022119

Travelling wave solutions of the cubic nonlocal Fisher-KPP equation: I. General theory and the near local limit

J Billingham and D J Needham
Nonlinearity 35 (12) 6098 (2022)
https://doi.org/10.1088/1361-6544/ac98ea

Local asymptotic stability of a system of integro-differential equations describing clonal evolution of a self-renewing cell population under mutation

Jan-Erik Busse, Sílvia Cuadrado and Anna Marciniak-Czochra
Journal of Mathematical Biology 84 (1-2) (2022)
https://doi.org/10.1007/s00285-021-01708-w

Cancer, Complexity, Computation

Benedetta Casadei, Marta Giacosa, Alessandro Maula, et al.
Emergence, Complexity and Computation, Cancer, Complexity, Computation 46 309 (2022)
https://doi.org/10.1007/978-3-031-04379-6_14

Bivalent chromatin as a therapeutic target in cancer: An in silico predictive approach for combining epigenetic drugs

Tomás Alarcón, Josep Sardanyés, Antoni Guillamon, Javier A. Menendez and Ilya Ioshikhes
PLOS Computational Biology 17 (6) e1008408 (2021)
https://doi.org/10.1371/journal.pcbi.1008408

On Systems of Active Particles Perturbed by Symmetric Bounded Noises: A Multiscale Kinetic Approach

Bruno Felice Filippo Flora, Armando Ciancio and Alberto d’Onofrio
Symmetry 13 (9) 1604 (2021)
https://doi.org/10.3390/sym13091604

A Mathematical Study of the Influence of Hypoxia and Acidity on the Evolutionary Dynamics of Cancer

Giada Fiandaca, Marcello Delitala and Tommaso Lorenzi
Bulletin of Mathematical Biology 83 (7) (2021)
https://doi.org/10.1007/s11538-021-00914-3

Do mechanisms matter? Comparing cancer treatment strategies across mathematical models and outcome objectives

Cassidy K. Buhler, Rebecca S. Terry, Kathryn G. Link and Frederick R. Adler
Mathematical Biosciences and Engineering 18 (5) 6305 (2021)
https://doi.org/10.3934/mbe.2021315

Global boundedness, hair trigger effect, and pattern formation driven by the parametrization of a nonlocal Fisher-KPP problem

Jing Li, Li Chen and Christina Surulescu
Journal of Differential Equations 269 (11) 9090 (2020)
https://doi.org/10.1016/j.jde.2020.06.039

Asymptotic analysis of selection-mutation models in the presence of multiple fitness peaks

Tommaso Lorenzi and Camille Pouchol
Nonlinearity 33 (11) 5791 (2020)
https://doi.org/10.1088/1361-6544/ab9bad

Trends in Biomathematics: Modeling Cells, Flows, Epidemics, and the Environment

T. Lorenzi, F. R. Macfarlane and C. Villa
Trends in Biomathematics: Modeling Cells, Flows, Epidemics, and the Environment 359 (2020)
https://doi.org/10.1007/978-3-030-46306-9_22

Eradicating Metastatic Cancer and the Eco-Evolutionary Dynamics of Anthropocene Extinctions

Robert A. Gatenby, Yael Artzy-Randrup, Tamir Epstein, Damon R. Reed and Joel S. Brown
Cancer Research 80 (3) 613 (2020)
https://doi.org/10.1158/0008-5472.CAN-19-1941

Viability in a non-local population model structured by size and spatial position

Thomas Lorenz
Journal of Mathematical Analysis and Applications 491 (1) 124249 (2020)
https://doi.org/10.1016/j.jmaa.2020.124249

The impact of competition between cancer cells and healthy cells on optimal drug delivery

Heyrim Cho, Doron Levy, Florence Hubert and Jean Clairambault
Mathematical Modelling of Natural Phenomena 15 42 (2020)
https://doi.org/10.1051/mmnp/2019043

Optimizing adaptive cancer therapy: dynamic programming and evolutionary game theory

Mark Gluzman, Jacob G. Scott and Alexander Vladimirsky
Proceedings of the Royal Society B: Biological Sciences 287 (1925) 20192454 (2020)
https://doi.org/10.1098/rspb.2019.2454

Evolutionary dynamics of competing phenotype-structured populations in periodically fluctuating environments

Aleksandra Ardaševa, Robert A. Gatenby, Alexander R. A. Anderson, et al.
Journal of Mathematical Biology 80 (3) 775 (2020)
https://doi.org/10.1007/s00285-019-01441-5

Efficiency of cancer treatments: in silico experiments

Elena Piretto, Marcello Delitala, Mario Ferraro and Florence Hubert
Mathematical Modelling of Natural Phenomena 15 19 (2020)
https://doi.org/10.1051/mmnp/2019031

Discrete and continuum phenotype-structured models for the evolution of cancer cell populations under chemotherapy

Rebecca E.A. Stace, Thomas Stiehl, Mark A.J. Chaplain, et al.
Mathematical Modelling of Natural Phenomena 15 14 (2020)
https://doi.org/10.1051/mmnp/2019027

Mathematical models for cell migration: a non-local perspective

Li Chen, Kevin Painter, Christina Surulescu and Anna Zhigun
Philosophical Transactions of the Royal Society B: Biological Sciences 375 (1807) 20190379 (2020)
https://doi.org/10.1098/rstb.2019.0379

Investigation of solid tumor progression with account of proliferation/migration dichotomy via Darwinian mathematical model

Maxim Kuznetsov and Andrey Kolobov
Journal of Mathematical Biology 80 (3) 601 (2020)
https://doi.org/10.1007/s00285-019-01434-4

Mathematical Approach to Differentiate Spontaneous and Induced Evolution to Drug Resistance During Cancer Treatment

James M. Greene, Jana L. Gevertz and Eduardo D. Sontag
JCO Clinical Cancer Informatics (3) 1 (2019)
https://doi.org/10.1200/CCI.18.00087

Combination of Direct Methods and Homotopy in Numerical Optimal Control: Application to the Optimization of Chemotherapy in Cancer

Antoine Olivier and Camille Pouchol
Journal of Optimization Theory and Applications 181 (2) 479 (2019)
https://doi.org/10.1007/s10957-018-01461-z

Evolution of cancer cell populations under cytotoxic therapy and treatment optimisation: insight from a phenotype-structured model

Luís Almeida, Patrizia Bagnerini, Giulia Fabrini, Barry D. Hughes and Tommaso Lorenzi
ESAIM: Mathematical Modelling and Numerical Analysis 53 (4) 1157 (2019)
https://doi.org/10.1051/m2an/2019010

Mild thermotherapy and hyperbaric oxygen enhance sensitivity of TMZ/PSi nanoparticles via decreasing the stemness in glioma

Xiaofan Zeng, Qi Wang, Xuan Tan, et al.
Journal of Nanobiotechnology 17 (1) (2019)
https://doi.org/10.1186/s12951-019-0483-1

Spatio-Genetic and phenotypic modelling elucidates resistance and re-sensitisation to treatment in heterogeneous melanoma

Arran Hodgkinson, Laurent Le Cam, Dumitru Trucu and Ovidiu Radulescu
Journal of Theoretical Biology 466 84 (2019)
https://doi.org/10.1016/j.jtbi.2018.11.037

Adomyan Decomposition Method for a Two-Component Nonlocal Reaction-Diffusion Model of the Fisher–Kolmogorov–Petrovsky–Piskunov Type

A. V. Shapovalov and A. Yu. Trifonov
Russian Physics Journal 62 (5) 835 (2019)
https://doi.org/10.1007/s11182-019-01785-x

Asymptotic analysis and optimal control of an integro-differential system modelling healthy and cancer cells exposed to chemotherapy

Camille Pouchol, Jean Clairambault, Alexander Lorz and Emmanuel Trélat
Journal de Mathématiques Pures et Appliquées 116 268 (2018)
https://doi.org/10.1016/j.matpur.2017.10.007

Global stability with selection in integro-differential Lotka-Volterra systems modelling trait-structured populations

Camille Pouchol and Emmanuel Trélat
Journal of Biological Dynamics 12 (1) 872 (2018)
https://doi.org/10.1080/17513758.2018.1515994

The role of spatial variations of abiotic factors in mediating intratumour phenotypic heterogeneity

Tommaso Lorenzi, Chandrasekhar Venkataraman, Alexander Lorz and Mark A.J. Chaplain
Journal of Theoretical Biology 451 101 (2018)
https://doi.org/10.1016/j.jtbi.2018.05.002

Signal Propagation in Sensing and Reciprocating Cellular Systems with Spatial and Structural Heterogeneity

Arran Hodgkinson, Gilles Uzé, Ovidiu Radulescu and Dumitru Trucu
Bulletin of Mathematical Biology 80 (7) 1900 (2018)
https://doi.org/10.1007/s11538-018-0439-x

Computational Approaches and Analysis for a Spatio-Structural-Temporal Invasive Carcinoma Model

Arran Hodgkinson, Mark A. J. Chaplain, Pia Domschke and Dumitru Trucu
Bulletin of Mathematical Biology 80 (4) 701 (2018)
https://doi.org/10.1007/s11538-018-0396-4

Integrating Biological and Mathematical Models to Explain and Overcome Drug Resistance in Cancer, Part 2: from Theoretical Biology to Mathematical Models

Aaron Goldman, Mohammad Kohandel and Jean Clairambault
Current Stem Cell Reports 3 (3) 260 (2017)
https://doi.org/10.1007/s40778-017-0098-0

Application of mathematical models to metronomic chemotherapy: What can be inferred from minimal parameterized models?

Urszula Ledzewicz and Heinz Schättler
Cancer Letters 401 74 (2017)
https://doi.org/10.1016/j.canlet.2017.03.021

Global existence and asymptotic behavior of solutions to a nonlocal Fisher–KPP type problem

Shen Bian, Li Chen and Evangelos A. Latos
Nonlinear Analysis: Theory, Methods & Applications 149 165 (2017)
https://doi.org/10.1016/j.na.2016.10.017

Modeling Cancer Cell Growth Dynamics In vitro in Response to Antimitotic Drug Treatment

Alexander Lorz, Dana-Adriana Botesteanu and Doron Levy
Frontiers in Oncology 7 (2017)
https://doi.org/10.3389/fonc.2017.00189

On drug resistance and metronomic chemotherapy: A mathematical modeling and optimal control approach

Urszula Ledzewicz, Shuo Wang, Heinz Schättler, et al.
Mathematical Biosciences and Engineering 14 (1) 217 (2017)
https://doi.org/10.3934/mbe.2017014

Mathematical Modeling of Normal and Cancer Stem Cells

Lora D. Weiss, Natalia L. Komarova and Ignacio A. Rodriguez-Brenes
Current Stem Cell Reports 3 (3) 232 (2017)
https://doi.org/10.1007/s40778-017-0094-4

Emergence of spatial patterns in a mathematical model for the co-culture dynamics of epithelial-like and mesenchymal-like cells

Marcello Delitala and Tommaso Lorenzi
Mathematical Biosciences and Engineering 14 (1) 79 (2017)
https://doi.org/10.3934/mbe.2017006

Pharmacokinetics and Drug Interactions Determine Optimum Combination Strategies in Computational Models of Cancer Evolution

Shaon Chakrabarti and Franziska Michor
Cancer Research 77 (14) 3908 (2017)
https://doi.org/10.1158/0008-5472.CAN-16-2871

Modeling the Dynamics of Heterogeneity of Solid Tumors in Response to Chemotherapy

Heyrim Cho and Doron Levy
Bulletin of Mathematical Biology 79 (12) 2986 (2017)
https://doi.org/10.1007/s11538-017-0359-1

Wavefronts for a nonlinear nonlocal bistable reaction–diffusion equation in population dynamics

Jing Li, Evangelos Latos and Li Chen
Journal of Differential Equations 263 (10) 6427 (2017)
https://doi.org/10.1016/j.jde.2017.07.019

Multi-scale Modeling in Clinical Oncology: Opportunities and Barriers to Success

Thomas E. Yankeelov, Gary An, Oliver Saut, et al.
Annals of Biomedical Engineering 44 (9) 2626 (2016)
https://doi.org/10.1007/s10439-016-1691-6

Systems Biology of Tumor Microenvironment

Urszula Ledzewicz and Heinz Schaettler
Advances in Experimental Medicine and Biology, Systems Biology of Tumor Microenvironment 936 209 (2016)
https://doi.org/10.1007/978-3-319-42023-3_11

Applied mathematics and nonlinear sciences in the war on cancer

Víctor M. Pérez-García, Susan Fitzpatrick, Luis A. Pérez-Romasanta, Milica Pesic, Philippe Schucht, Estanislao Arana and Pilar Sánchez-Gómez
Applied Mathematics and Nonlinear Sciences 1 (2) 423 (2016)
https://doi.org/10.21042/AMNS.2016.2.00036

Cell population heterogeneity and evolution towards drug resistance in cancer: Biological and mathematical assessment, theoretical treatment optimisation

Rebecca H. Chisholm, Tommaso Lorenzi and Jean Clairambault
Biochimica et Biophysica Acta (BBA) - General Subjects 1860 (11) 2627 (2016)
https://doi.org/10.1016/j.bbagen.2016.06.009

Tommaso Lorenzi, Rebecca H. Chisholm, Alexander Lorz, Annette K. Larsen, Luís Neves de Almeida, Alexandre Escargueil and Jean Clairambault
1738 320008 (2016)
https://doi.org/10.1063/1.4952112

Dynamical properties of a minimally parameterized mathematical model for metronomic chemotherapy

Heinz Schättler, Urszula Ledzewicz and Behrooz Amini
Journal of Mathematical Biology 72 (5) 1255 (2016)
https://doi.org/10.1007/s00285-015-0907-y

Optimal control of a mathematical model for cancer chemotherapy under tumor heterogeneity

Heinz Schättler and Shuo Wang
Mathematical Biosciences and Engineering 13 (6) 1223 (2016)
https://doi.org/10.3934/mbe.2016040

Asymptotics semiclassically concentrated on curves for the nonlocal Fisher–Kolmogorov–Petrovskii–Piskunov equation

E A Levchenko, A V Shapovalov and A Yu Trifonov
Journal of Physics A: Mathematical and Theoretical 49 (30) 305203 (2016)
https://doi.org/10.1088/1751-8113/49/30/305203

Evolutionary dynamics of phenotype-structured populations: from individual-level mechanisms to population-level consequences

Rebecca H. Chisholm, Tommaso Lorenzi, Laurent Desvillettes and Barry D. Hughes
Zeitschrift für angewandte Mathematik und Physik 67 (4) (2016)
https://doi.org/10.1007/s00033-016-0690-7

Physiologically Structured Cell Population Dynamic Models with Applications to Combined Drug Delivery Optimisation in Oncology

J. Clairambault, O. Fercoq, G. Bocharov, J. Clairambault and V. Volpert
Mathematical Modelling of Natural Phenomena 11 (6) 45 (2016)
https://doi.org/10.1051/mmnp/201611604

Tracking the evolution of cancer cell populations through the mathematical lens of phenotype-structured equations

Tommaso Lorenzi, Rebecca H. Chisholm and Jean Clairambault
Biology Direct 11 (1) (2016)
https://doi.org/10.1186/s13062-016-0143-4

Transfer of Drug Resistance Characteristics Between Cancer Cell Subpopulations: A Study Using Simple Mathematical Models

María Rosa Durán, Ana Podolski-Renić, Arturo Álvarez-Arenas, et al.
Bulletin of Mathematical Biology 78 (6) 1218 (2016)
https://doi.org/10.1007/s11538-016-0182-0

Mathematics of Pharmacokinetics and Pharmacodynamics: Diversity of Topics, Models and Methods

G. Bocharov, A. Bouchnita, J. Clairambault, et al.
Mathematical Modelling of Natural Phenomena 11 (6) 1 (2016)
https://doi.org/10.1051/mmnp/201611601

Limiting the development of anti-cancer drug resistance in a spatial model of micrometastases

Jana L. Gevertz, Katarzyna A. Rejniak and Ami B. Shah
Mathematical Biosciences and Engineering 13 (6) 1185 (2016)
https://doi.org/10.3934/mbe.2016038

Applications of Dynamical Systems in Biology and Medicine

Jana L. Gevertz, Zahra Aminzare, Kerri-Ann Norton, et al.
The IMA Volumes in Mathematics and its Applications, Applications of Dynamical Systems in Biology and Medicine 158 1 (2015)
https://doi.org/10.1007/978-1-4939-2782-1_1

Emergence of Drug Tolerance in Cancer Cell Populations: An Evolutionary Outcome of Selection, Nongenetic Instability, and Stress-Induced Adaptation

Rebecca H. Chisholm, Tommaso Lorenzi, Alexander Lorz, et al.
Cancer Research 75 (6) 930 (2015)
https://doi.org/10.1158/0008-5472.CAN-14-2103

Dynamics of preventive vs post-diagnostic cancer control using low-impact measures

Andrei R Akhmetzhanov and Michael E Hochberg
eLife 4 (2015)
https://doi.org/10.7554/eLife.06266

Modeling the Effects of Space Structure and Combination Therapies on Phenotypic Heterogeneity and Drug Resistance in Solid Tumors

Alexander Lorz, Tommaso Lorenzi, Jean Clairambault, Alexandre Escargueil and Benoît Perthame
Bulletin of Mathematical Biology 77 (1) 1 (2015)
https://doi.org/10.1007/s11538-014-0046-4

Metronomic reloaded: Theoretical models bringing chemotherapy into the era of precision medicine

Sébastien Benzekry, Eddy Pasquier, Dominique Barbolosi, et al.
Seminars in Cancer Biology 35 53 (2015)
https://doi.org/10.1016/j.semcancer.2015.09.002

Preface to the Issue Nonlocal Reaction-Diffusion Equations

M. Alfaro, N. Apreutesei, F. Davidson, et al.
Mathematical Modelling of Natural Phenomena 10 (6) 1 (2015)
https://doi.org/10.1051/mmnp/201510601

Dissecting the dynamics of epigenetic changes in phenotype-structured populations exposed to fluctuating environments

Tommaso Lorenzi, Rebecca H. Chisholm, Laurent Desvillettes and Barry D. Hughes
Journal of Theoretical Biology 386 166 (2015)
https://doi.org/10.1016/j.jtbi.2015.08.031

Spatial Heterogeneity in Drug Concentrations Can Facilitate the Emergence of Resistance to Cancer Therapy

Feng Fu, Martin A. Nowak, Sebastian Bonhoeffer and Rustom Antia
PLOS Computational Biology 11 (3) e1004142 (2015)
https://doi.org/10.1371/journal.pcbi.1004142

Optimal Control for Mathematical Models of Cancer Therapies

Heinz Schättler and Urszula Ledzewicz
Interdisciplinary Applied Mathematics, Optimal Control for Mathematical Models of Cancer Therapies 42 115 (2015)
https://doi.org/10.1007/978-1-4939-2972-6_3

The Impact of Cell Density and Mutations in a Model of Multidrug Resistance in Solid Tumors

James Greene, Orit Lavi, Michael M. Gottesman and Doron Levy
Bulletin of Mathematical Biology 76 (3) 627 (2014)
https://doi.org/10.1007/s11538-014-9936-8

Simplifying the complexity of resistance heterogeneity in metastasis

Orit Lavi, James M. Greene, Doron Levy and Michael M. Gottesman
Trends in Molecular Medicine 20 (3) 129 (2014)
https://doi.org/10.1016/j.molmed.2013.12.005