Articles citing this article

The Citing articles tool gives a list of articles citing the current article.
The citing articles come from EDP Sciences database, as well as other publishers participating in CrossRef Cited-by Linking Program. You can set up your personal account to receive an email alert each time this article is cited by a new article (see the menu on the right-hand side of the abstract page).

Cited article:

Hierarchical a posteriori error estimation of Bank–Weiser type in the FEniCS Project

Raphaël Bulle, Jack S. Hale, Alexei Lozinski, Stéphane P.A. Bordas and Franz Chouly
Computers & Mathematics with Applications 131 103 (2023)
https://doi.org/10.1016/j.camwa.2022.11.009

A Convenient Inclusion of Inhomogeneous Boundary Conditions in Minimal Residual Methods

Rob Stevenson
Computational Methods in Applied Mathematics (2023)
https://doi.org/10.1515/cmam-2023-0072

Equivalence of local- and global-best approximations, a simple stable local commuting projector, and optimal hp approximation estimates in H (div)

Alexandre Ern, Thirupathi Gudi, Iain Smears and Martin Vohralík
IMA Journal of Numerical Analysis 42 (2) 1023 (2022)
https://doi.org/10.1093/imanum/draa103

How to prove optimal convergence rates for adaptive least-squares finite element methods∗

Philipp Bringmann
Journal of Numerical Mathematics (2022)
https://doi.org/10.1515/jnma-2021-0116

H 1-stability of the L2-projection onto finite element spaces on adaptively refined quadrilateral meshes

Mazen Ali, Stefan A Funken and Anja Schmidt
IMA Journal of Numerical Analysis 42 (3) 2684 (2022)
https://doi.org/10.1093/imanum/drab048

On the stability of Scott-Zhang type operators and application to multilevel preconditioning in fractional diffusion

Markus Faustmann, Jens Markus Melenk and Maryam Parvizi
ESAIM: Mathematical Modelling and Numerical Analysis 55 (2) 595 (2021)
https://doi.org/10.1051/m2an/2020079

Functional a posteriori error estimates for boundary element methods

Stefan Kurz, Dirk Pauly, Dirk Praetorius, Sergey Repin and Daniel Sebastian
Numerische Mathematik 147 (4) 937 (2021)
https://doi.org/10.1007/s00211-021-01188-6

Localization of the W-1,q norm for local a posteriori efficiency

Martin Vohralík, Josef Málek and Jan Blechta
IMA Journal of Numerical Analysis 40 (2) 914 (2020)
https://doi.org/10.1093/imanum/drz002

h-adaptive least-squares finite element methods for the 2D Stokes equations of any order with optimal convergence rates

P. Bringmann and C. Carstensen
Computers & Mathematics with Applications 74 (8) 1923 (2017)
https://doi.org/10.1016/j.camwa.2017.02.019

Adaptive FEM with coarse initial mesh guarantees optimal convergence rates for compactly perturbed elliptic problems

Alex Bespalov, Alexander Haberl and Dirk Praetorius
Computer Methods in Applied Mechanics and Engineering 317 318 (2017)
https://doi.org/10.1016/j.cma.2016.12.014

An Abstract Analysis of Optimal Goal-Oriented Adaptivity

Michael Feischl, Dirk Praetorius and Kristoffer G. van der Zee
SIAM Journal on Numerical Analysis 54 (3) 1423 (2016)
https://doi.org/10.1137/15M1021982

Energy norm based error estimators for adaptive BEM for hypersingular integral equations

Markus Aurada, Michael Feischl, Thomas Führer, Michael Karkulik and Dirk Praetorius
Applied Numerical Mathematics 95 15 (2015)
https://doi.org/10.1016/j.apnum.2013.12.004

Adaptive Boundary Element Methods

Michael Feischl, Thomas Führer, Norbert Heuer, Michael Karkulik and Dirk Praetorius
Archives of Computational Methods in Engineering 22 (3) 309 (2015)
https://doi.org/10.1007/s11831-014-9114-z

Multiscale modeling in micromagnetics: Existence of solutions and numerical integration

F. Bruckner, D. Suess, M. Feischl, T. Führer, P. Goldenits, M. Page, D. Praetorius and M. Ruggeri
Mathematical Models and Methods in Applied Sciences 24 (13) 2627 (2014)
https://doi.org/10.1142/S0218202514500328

Adaptive FEM with Optimal Convergence Rates for a Certain Class of Nonsymmetric and Possibly Nonlinear Problems

M. Feischl, T. Führer and D. Praetorius
SIAM Journal on Numerical Analysis 52 (2) 601 (2014)
https://doi.org/10.1137/120897225

EachH1/2–stable projection yields convergence and quasi–optimality of adaptive FEM with inhomogeneous Dirichlet data in Rd

M. Aurada, M. Feischl, J. Kemetmüller, M. Page and D. Praetorius
ESAIM: Mathematical Modelling and Numerical Analysis 47 (4) 1207 (2013)
https://doi.org/10.1051/m2an/2013069

On 2D Newest Vertex Bisection: Optimality of Mesh-Closure and H 1-Stability of L 2-Projection

Michael Karkulik, David Pavlicek and Dirk Praetorius
Constructive Approximation 38 (2) 213 (2013)
https://doi.org/10.1007/s00365-013-9192-4