Articles citing this article

The Citing articles tool gives a list of articles citing the current article.
The citing articles come from EDP Sciences database, as well as other publishers participating in CrossRef Cited-by Linking Program. You can set up your personal account to receive an email alert each time this article is cited by a new article (see the menu on the right-hand side of the abstract page).

Cited article:

A new DG method for a pure–stress formulation of the Brinkman problem with strong symmetry

Salim Meddahi and Ricardo Ruiz-Baier
Networks and Heterogeneous Media 17 (6) 893 (2022)
https://doi.org/10.3934/nhm.2022031

Second-order schemes for axisymmetric Navier–Stokes–Brinkman and transport equations modelling water filters

Graham Baird, Raimund Bürger, Paul E. Méndez and Ricardo Ruiz-Baier
Numerische Mathematik 147 (2) 431 (2021)
https://doi.org/10.1007/s00211-020-01169-1

A mixed-primal finite element method for the coupling of Brinkman–Darcy flow and nonlinear transport

Mario Alvarez, Gabriel N Gatica and Ricardo Ruiz-Baier
IMA Journal of Numerical Analysis 41 (1) 381 (2021)
https://doi.org/10.1093/imanum/drz060

Model of approximation of a velocity, vorticity and pressure in an incompressible fluid

A Altamirano-Fernández, J G Vergaño-Salazar and I Duarte-Gandica
Journal of Physics: Conference Series 1514 (1) 012002 (2020)
https://doi.org/10.1088/1742-6596/1514/1/012002

A new staggered DG method for the Brinkman problem robust in the Darcy and Stokes limits

Lina Zhao, Eric Chung and Ming Fai Lam
Computer Methods in Applied Mechanics and Engineering 364 112986 (2020)
https://doi.org/10.1016/j.cma.2020.112986

Distribution model of toxic agents and runoff phenomenon in flat aquatic regions

J G Vergaño-Salazar, J F C A Meyer, F Córdova-Lepe and E Duque Marín
Journal of Physics: Conference Series 1514 (1) 012004 (2020)
https://doi.org/10.1088/1742-6596/1514/1/012004

A model for incompressible fluids using finite element methods for the Brinkman problem

A Altamirano-Fernández, E A Gómez-Hernández, E Duque-Marín and A Vásquez
Journal of Physics: Conference Series 1702 (1) 012001 (2020)
https://doi.org/10.1088/1742-6596/1702/1/012001

Vorticity‐pressure formulations for the Brinkman‐Darcy coupled problem

Verónica Anaya, David Mora, Carlos Reales and Ricardo Ruiz‐Baier
Numerical Methods for Partial Differential Equations 35 (2) 528 (2019)
https://doi.org/10.1002/num.22312

A priori and a posteriori error analyses of an HDG method for the Brinkman problem

Luis F. Gatica and Filánder A. Sequeira
Computers & Mathematics with Applications 75 (4) 1191 (2018)
https://doi.org/10.1016/j.camwa.2017.10.038

A mixed virtual element method for the Brinkman problem

Ernesto Cáceres, Gabriel N. Gatica and Filánder A. Sequeira
Mathematical Models and Methods in Applied Sciences 27 (04) 707 (2017)
https://doi.org/10.1142/S0218202517500142

Mixed Methods for a Stream-Function – Vorticity Formulation of the Axisymmetric Brinkman Equations

Verónica Anaya, David Mora, Carlos Reales and Ricardo Ruiz-Baier
Journal of Scientific Computing 71 (1) 348 (2017)
https://doi.org/10.1007/s10915-016-0302-x

Partitioned coupling of advection–diffusion–reaction systems and Brinkman flows

Pietro Lenarda, Marco Paggi and Ricardo Ruiz Baier
Journal of Computational Physics 344 281 (2017)
https://doi.org/10.1016/j.jcp.2017.05.011

Pure vorticity formulation and Galerkin discretization for the Brinkman equations

Verónica Anaya, David Mora and Ricardo Ruiz-Baier
IMA Journal of Numerical Analysis drw056 (2016)
https://doi.org/10.1093/imanum/drw056

Discontinuous approximation of viscous two-phase flow in heterogeneous porous media

Raimund Bürger, Sarvesh Kumar, Kenettinkara Sudarshan Kumar and Ricardo Ruiz-Baier
Journal of Computational Physics 321 126 (2016)
https://doi.org/10.1016/j.jcp.2016.05.043

A priori and a posteriori error analysis of a mixed scheme for the Brinkman problem

Verónica Anaya, David Mora, Ricardo Oyarzúa and Ricardo Ruiz-Baier
Numerische Mathematik 133 (4) 781 (2016)
https://doi.org/10.1007/s00211-015-0758-x

Discontinuous finite volume element discretization for coupled flow–transport problems arising in models of sedimentation

Raimund Bürger, Sarvesh Kumar and Ricardo Ruiz-Baier
Journal of Computational Physics 299 446 (2015)
https://doi.org/10.1016/j.jcp.2015.07.020