Articles citing this article

The Citing articles tool gives a list of articles citing the current article.
The citing articles come from EDP Sciences database, as well as other publishers participating in CrossRef Cited-by Linking Program. You can set up your personal account to receive an email alert each time this article is cited by a new article (see the menu on the right-hand side of the abstract page).

Cited article:

Convergence and rate optimality of adaptive multilevel stochastic Galerkin FEM

Alex Bespalov, Dirk Praetorius and Michele Ruggeri
IMA Journal of Numerical Analysis 42 (3) 2190 (2022)
https://doi.org/10.1093/imanum/drab036

Error Estimation and Adaptivity for Stochastic Collocation Finite Elements Part I: Single-Level Approximation

Alex Bespalov, David J. Silvester and Feng Xu
SIAM Journal on Scientific Computing 44 (5) A3393 (2022)
https://doi.org/10.1137/21M1446745

An adaptive hp-version stochastic Galerkin method for constrained optimal control problem governed by random reaction diffusion equations

Liang Ge and Tongjun Sun
Computational and Applied Mathematics 41 (3) (2022)
https://doi.org/10.1007/s40314-022-01805-6

An adaptive stochastic Galerkin method based on multilevel expansions of random fields: Convergence and optimality

Markus Bachmayr and Igor Voulis
ESAIM: Mathematical Modelling and Numerical Analysis 56 (6) 1955 (2022)
https://doi.org/10.1051/m2an/2022062

On the Convergence of Adaptive Stochastic Collocation for Elliptic Partial Differential Equations with Affine Diffusion

Martin Eigel, Oliver G. Ernst, Björn Sprungk and Lorenzo Tamellini
SIAM Journal on Numerical Analysis 60 (2) 659 (2022)
https://doi.org/10.1137/20M1364722

Sparse Grids and Applications - Munich 2018

Fabio Nobile and Eva Vidličková
Lecture Notes in Computational Science and Engineering, Sparse Grids and Applications - Munich 2018 144 127 (2021)
https://doi.org/10.1007/978-3-030-81362-8_6

Two-Level a Posteriori Error Estimation for Adaptive Multilevel Stochastic Galerkin Finite Element Method

Alex Bespalov, Dirk Praetorius and Michele Ruggeri
SIAM/ASA Journal on Uncertainty Quantification 9 (3) 1184 (2021)
https://doi.org/10.1137/20M1342586

Spatio-stochastic adaptive discontinuous Galerkin methods

Geoff Donoghue and Masayuki Yano
Computer Methods in Applied Mechanics and Engineering 374 113570 (2021)
https://doi.org/10.1016/j.cma.2020.113570

Adaptive stochastic Galerkin FEM for lognormal coefficients in hierarchical tensor representations

Martin Eigel, Manuel Marschall, Max Pfeffer and Reinhold Schneider
Numerische Mathematik 145 (3) 655 (2020)
https://doi.org/10.1007/s00211-020-01123-1

An Adaptive Stochastic Galerkin Tensor Train Discretization for Randomly Perturbed Domains

Martin Eigel, Manuel Marschall and Michael Multerer
SIAM/ASA Journal on Uncertainty Quantification 8 (3) 1189 (2020)
https://doi.org/10.1137/19M1246080

A domain decomposition algorithm for optimal control problems governed by elliptic PDEs with random inputs

Yoongu Hwang, Jangwoon Lee, Jeehyun Lee and Myoungho Yoon
Applied Mathematics and Computation 364 124674 (2020)
https://doi.org/10.1016/j.amc.2019.124674

A fully adaptive multilevel stochastic collocation strategy for solving elliptic PDEs with random data

J. Lang, R. Scheichl and D. Silvester
Journal of Computational Physics 419 109692 (2020)
https://doi.org/10.1016/j.jcp.2020.109692

A posteriori error estimation and adaptivity in stochastic Galerkin FEM for parametric elliptic PDEs: Beyond the affine case

Alex Bespalov and Feng Xu
Computers & Mathematics with Applications 80 (5) 1084 (2020)
https://doi.org/10.1016/j.camwa.2020.05.023

Variational Monte Carlo—bridging concepts of machine learning and high-dimensional partial differential equations

Martin Eigel, Reinhold Schneider, Philipp Trunschke and Sebastian Wolf
Advances in Computational Mathematics 45 (5-6) 2503 (2019)
https://doi.org/10.1007/s10444-019-09723-8

Partial Differential Equations with Random Input Data: A Perturbation Approach

Diane Guignard
Archives of Computational Methods in Engineering 26 (5) 1313 (2019)
https://doi.org/10.1007/s11831-018-9275-2

Non-intrusive Tensor Reconstruction for High-Dimensional Random PDEs

Martin Eigel, Johannes Neumann, Reinhold Schneider and Sebastian Wolf
Computational Methods in Applied Mathematics 19 (1) 39 (2019)
https://doi.org/10.1515/cmam-2018-0028

Convergence of Adaptive Stochastic Galerkin FEM

Alex Bespalov, Dirk Praetorius, Leonardo Rocchi and Michele Ruggeri
SIAM Journal on Numerical Analysis 57 (5) 2359 (2019)
https://doi.org/10.1137/18M1229560

Efficient Adaptive Multilevel Stochastic Galerkin Approximation Using Implicit A Posteriori Error Estimation

Adam J. Crowder, Catherine E. Powell and Alex Bespalov
SIAM Journal on Scientific Computing 41 (3) A1681 (2019)
https://doi.org/10.1137/18M1194420

Goal-oriented error estimation and adaptivity for elliptic PDEs with parametric or uncertain inputs

Alex Bespalov, Dirk Praetorius, Leonardo Rocchi and Michele Ruggeri
Computer Methods in Applied Mechanics and Engineering 345 951 (2019)
https://doi.org/10.1016/j.cma.2018.10.041

Parametric PDEs: sparse or low-rank approximations?

Markus Bachmayr, Albert Cohen and Wolfgang Dahmen
IMA Journal of Numerical Analysis 38 (4) 1661 (2018)
https://doi.org/10.1093/imanum/drx052

Efficient Adaptive Algorithms for Elliptic PDEs with Random Data

Alex Bespalov and Leonardo Rocchi
SIAM/ASA Journal on Uncertainty Quantification 6 (1) 243 (2018)
https://doi.org/10.1137/17M1139928

A Posteriori Error Estimation for the Stochastic Collocation Finite Element Method

Diane Guignard and Fabio Nobile
SIAM Journal on Numerical Analysis 56 (5) 3121 (2018)
https://doi.org/10.1137/17M1155454

Sampling-free Bayesian inversion with adaptive hierarchical tensor representations

Martin Eigel, Manuel Marschall and Reinhold Schneider
Inverse Problems 34 (3) 035010 (2018)
https://doi.org/10.1088/1361-6420/aaa998

CBS Constants & Their Role in Error Estimation for Stochastic Galerkin Finite Element Methods

Adam J. Crowder and Catherine E. Powell
Journal of Scientific Computing 77 (2) 1030 (2018)
https://doi.org/10.1007/s10915-018-0736-4

Adaptive stochastic Galerkin FEM with hierarchical tensor representations

Martin Eigel, Max Pfeffer and Reinhold Schneider
Numerische Mathematik 136 (3) 765 (2017)
https://doi.org/10.1007/s00211-016-0850-x

Sparse Adaptive Tensor Galerkin Approximations of Stochastic PDE-Constrained Control Problems

Angela Kunoth and Christoph Schwab
SIAM/ASA Journal on Uncertainty Quantification 4 (1) 1034 (2016)
https://doi.org/10.1137/15M1041390

Hierarchical preconditioning for the stochastic Galerkin method: Upper bounds to the strengthened CBS constants

Ivana Pultarová
Computers & Mathematics with Applications 71 (4) 949 (2016)
https://doi.org/10.1016/j.camwa.2016.01.006