Articles citing this article

The Citing articles tool gives a list of articles citing the current article.
The citing articles come from EDP Sciences database, as well as other publishers participating in CrossRef Cited-by Linking Program. You can set up your personal account to receive an email alert each time this article is cited by a new article (see the menu on the right-hand side of the abstract page).

Cited article:

This article has been cited by the following article(s):

Hierarchical preconditioning for the stochastic Galerkin method: Upper bounds to the strengthened CBS constants

Ivana Pultarová
Computers & Mathematics with Applications 71 (4) 949 (2016)
DOI: 10.1016/j.camwa.2016.01.006
See this article

Sparse Adaptive Tensor Galerkin Approximations of Stochastic PDE-Constrained Control Problems

Angela Kunoth and Christoph Schwab
SIAM/ASA Journal on Uncertainty Quantification 4 (1) 1034 (2016)
DOI: 10.1137/15M1041390
See this article

Adaptive stochastic Galerkin FEM with hierarchical tensor representations

Martin Eigel, Max Pfeffer and Reinhold Schneider
Numerische Mathematik 136 (3) 765 (2017)
DOI: 10.1007/s00211-016-0850-x
See this article

Efficient Adaptive Algorithms for Elliptic PDEs with Random Data

Alex Bespalov and Leonardo Rocchi
SIAM/ASA Journal on Uncertainty Quantification 6 (1) 243 (2018)
DOI: 10.1137/17M1139928
See this article

Partial Differential Equations with Random Input Data: A Perturbation Approach

Diane Guignard
Archives of Computational Methods in Engineering 26 (5) 1313 (2019)
DOI: 10.1007/s11831-018-9275-2
See this article

A Posteriori Error Estimation for the Stochastic Collocation Finite Element Method

Diane Guignard and Fabio Nobile
SIAM Journal on Numerical Analysis 56 (5) 3121 (2018)
DOI: 10.1137/17M1155454
See this article

Spatio-stochastic adaptive discontinuous Galerkin methods

Geoff Donoghue and Masayuki Yano
Computer Methods in Applied Mechanics and Engineering 374 113570 (2021)
DOI: 10.1016/j.cma.2020.113570
See this article

Goal-oriented error estimation and adaptivity for elliptic PDEs with parametric or uncertain inputs

Alex Bespalov, Dirk Praetorius, Leonardo Rocchi and Michele Ruggeri
Computer Methods in Applied Mechanics and Engineering 345 951 (2019)
DOI: 10.1016/j.cma.2018.10.041
See this article

Variational Monte Carlo—bridging concepts of machine learning and high-dimensional partial differential equations

Martin Eigel, Reinhold Schneider, Philipp Trunschke and Sebastian Wolf
Advances in Computational Mathematics 45 (5-6) 2503 (2019)
DOI: 10.1007/s10444-019-09723-8
See this article

CBS Constants & Their Role in Error Estimation for Stochastic Galerkin Finite Element Methods

Adam J. Crowder and Catherine E. Powell
Journal of Scientific Computing 77 (2) 1030 (2018)
DOI: 10.1007/s10915-018-0736-4
See this article

A posteriori error estimation and adaptivity in stochastic Galerkin FEM for parametric elliptic PDEs: Beyond the affine case

Alex Bespalov and Feng Xu
Computers & Mathematics with Applications 80 (5) 1084 (2020)
DOI: 10.1016/j.camwa.2020.05.023
See this article

Adaptive stochastic Galerkin FEM for lognormal coefficients in hierarchical tensor representations

Martin Eigel, Manuel Marschall, Max Pfeffer and Reinhold Schneider
Numerische Mathematik 145 (3) 655 (2020)
DOI: 10.1007/s00211-020-01123-1
See this article

A fully adaptive multilevel stochastic collocation strategy for solving elliptic PDEs with random data

J. Lang, R. Scheichl and D. Silvester
Journal of Computational Physics 419 109692 (2020)
DOI: 10.1016/j.jcp.2020.109692
See this article

A domain decomposition algorithm for optimal control problems governed by elliptic PDEs with random inputs

Yoongu Hwang, Jangwoon Lee, Jeehyun Lee and Myoungho Yoon
Applied Mathematics and Computation 364 124674 (2020)
DOI: 10.1016/j.amc.2019.124674
See this article

Convergence of Adaptive Stochastic Galerkin FEM

Alex Bespalov, Dirk Praetorius, Leonardo Rocchi and Michele Ruggeri
SIAM Journal on Numerical Analysis 57 (5) 2359 (2019)
DOI: 10.1137/18M1229560
See this article

Parametric PDEs: sparse or low-rank approximations?

Markus Bachmayr, Albert Cohen and Wolfgang Dahmen
IMA Journal of Numerical Analysis 38 (4) 1661 (2018)
DOI: 10.1093/imanum/drx052
See this article

Efficient Adaptive Multilevel Stochastic Galerkin Approximation Using Implicit A Posteriori Error Estimation

Adam J. Crowder, Catherine E. Powell and Alex Bespalov
SIAM Journal on Scientific Computing 41 (3) A1681 (2019)
DOI: 10.1137/18M1194420
See this article

Hermann G. Matthies
1 (2018)
DOI: 10.1002/9781119176817.ecm2071
See this article

T-IFISS: a toolbox for adaptive FEM computation

Alex Bespalov, Leonardo Rocchi and David Silvester
Computers & Mathematics with Applications 81 373 (2021)
DOI: 10.1016/j.camwa.2020.03.005
See this article

An Adaptive Stochastic Galerkin Tensor Train Discretization for Randomly Perturbed Domains

Martin Eigel, Manuel Marschall and Michael Multerer
SIAM/ASA Journal on Uncertainty Quantification 8 (3) 1189 (2020)
DOI: 10.1137/19M1246080
See this article

Sampling-free Bayesian inversion with adaptive hierarchical tensor representations

Martin Eigel, Manuel Marschall and Reinhold Schneider
Inverse Problems 34 (3) 035010 (2018)
DOI: 10.1088/1361-6420/aaa998
See this article