The Citing articles tool gives a list of articles citing the current article. The citing articles come from EDP Sciences database, as well as other publishers participating in CrossRef Cited-by Linking Program . You can set up your personal account to receive an email alert each time this article is cited by a new article (see the menu on the right-hand side of the abstract page).
Cited article:
Guillaume Carlier , Adam Oberman , Edouard Oudet
ESAIM: M2AN, 49 6 (2015) 1621-1642
Published online: 2015-11-05
This article has been cited by the following article(s):
47 articles
Arjun Vijaywargiya, Guosheng Fu, Stanley Osher and Wuchen Li (2024) https://doi.org/10.2139/ssrn.4796547
Quantitative stability of barycenters in the Wasserstein space
Guillaume Carlier, Alex Delalande and Quentin Mérigot Probability Theory and Related Fields 188 (3-4) 1257 (2024) https://doi.org/10.1007/s00440-023-01241-5
Wasserstein principal component analysis for circular measures
Mario Beraha and Matteo Pegoraro Statistics and Computing 34 (5) (2024) https://doi.org/10.1007/s11222-024-10473-x
Thanh-Son Trinh 273 (2024) https://doi.org/10.1007/978-981-99-8976-8_24
Sampling-based methods for multi-block optimization problems over transport polytopes
Yukuan Hu, Mengyu Li, Xin Liu and Cheng Meng Mathematics of Computation (2024) https://doi.org/10.1090/mcom/3989
An Integer Program for Pricing Support Points of Exact Barycenters
Steffen Borgwardt and Stephan Patterson INFORMS Journal on Optimization 6 (2) 137 (2024) https://doi.org/10.1287/ijoo.2022.0028
Polynomial-time algorithms for multimarginal optimal transport problems with structure
Jason M. Altschuler and Enric Boix-Adserà Mathematical Programming 199 (1-2) 1107 (2023) https://doi.org/10.1007/s10107-022-01868-7
General construction and classes of explicit L1-optimal couplings
Giovanni Puccetti and Ludger Rüschendorf Bernoulli 29 (1) (2023) https://doi.org/10.3150/22-BEJ1481
Distributed Wasserstein Barycenters via Displacement Interpolation
Pedro Cisneros-Velarde and Francesco Bullo IEEE Transactions on Control of Network Systems 10 (2) 785 (2023) https://doi.org/10.1109/TCNS.2022.3210341
Low-Rank Tensor Approximations for Solving Multimarginal Optimal Transport Problems
Christoph Strössner and Daniel Kressner SIAM Journal on Imaging Sciences 16 (1) 169 (2023) https://doi.org/10.1137/22M1478355
An implicit gradient-descent procedure for minimax problems
Montacer Essid, Esteban G. Tabak and Giulio Trigila Mathematical Methods of Operations Research 97 (1) 57 (2023) https://doi.org/10.1007/s00186-022-00805-w
Kantorovich–Rubinstein Distance and Barycenter for Finitely Supported Measures: Foundations and Algorithms
Florian Heinemann, Marcel Klatt and Axel Munk Applied Mathematics & Optimization 87 (1) (2023) https://doi.org/10.1007/s00245-022-09911-x
Genetic Column Generation: Fast Computation of High-Dimensional Multimarginal Optimal Transport Problems
Gero Friesecke, Andreas S. Schulz and Daniela Vögler SIAM Journal on Scientific Computing 44 (3) A1632 (2022) https://doi.org/10.1137/21M140732X
Domain adaptation based on rough adjoint inconsistency and optimal transport for identifying autistic patients
Chun-lei Shi, Xian-wei Xin and Jia-cai Zhang Computer Methods and Programs in Biomedicine 215 106615 (2022) https://doi.org/10.1016/j.cmpb.2021.106615
An LP-based, strongly-polynomial 2-approximation algorithm for sparse Wasserstein barycenters
Steffen Borgwardt Operational Research 22 (2) 1511 (2022) https://doi.org/10.1007/s12351-020-00589-z
A column generation approach to the discrete barycenter problem
Steffen Borgwardt and Stephan Patterson Discrete Optimization 43 100674 (2022) https://doi.org/10.1016/j.disopt.2021.100674
Distributional barycenter problem through data-driven flows
Esteban G. Tabak, Giulio Trigila and Wenjun Zhao Pattern Recognition 130 108795 (2022) https://doi.org/10.1016/j.patcog.2022.108795
Wasserstein Barycenters Are NP-Hard to Compute
Jason M. Altschuler and Enric Boix-Adserà SIAM Journal on Mathematics of Data Science 4 (1) 179 (2022) https://doi.org/10.1137/21M1390062
Accelerating the Sinkhorn Algorithm for Sparse Multi-Marginal Optimal Transport via Fast Fourier Transforms
Fatima Antarou Ba and Michael Quellmalz Algorithms 15 (9) 311 (2022) https://doi.org/10.3390/a15090311
On clustering uncertain and structured data with Wasserstein barycenters and a geodesic criterion for the number of clusters
G. I. Papayiannis, G. N. Domazakis, D. Drivaliaris, et al. Journal of Statistical Computation and Simulation 91 (13) 2569 (2021) https://doi.org/10.1080/00949655.2021.1903463
Simulation of broad-band ground motions with consistent long-period and short-period components using the Wasserstein interpolation of acceleration envelopes
Tomohisa Okazaki, Hirotaka Hachiya, Asako Iwaki, et al. Geophysical Journal International 227 (1) 333 (2021) https://doi.org/10.1093/gji/ggab225
Optimal Transport With Relaxed Marginal Constraints
Jia Li and Lin Lin IEEE Access 9 58142 (2021) https://doi.org/10.1109/ACCESS.2021.3072613
Understanding the topology and the geometry of the space of persistence diagrams via optimal partial transport
Vincent Divol and Théo Lacombe Journal of Applied and Computational Topology 5 (1) 1 (2021) https://doi.org/10.1007/s41468-020-00061-z
Fusion of Elliptical Extended Object Estimates Parameterized With Orientation and Axes Lengths
Kolja Thormann and Marcus Baum IEEE Transactions on Aerospace and Electronic Systems 57 (4) 2369 (2021) https://doi.org/10.1109/TAES.2021.3057651
Clustering Patterns Connecting COVID-19 Dynamics and Human Mobility Using Optimal Transport
Frank Nielsen, Gautier Marti, Sumanta Ray and Saumyadipta Pyne Sankhya B 83 (S1) 167 (2021) https://doi.org/10.1007/s13571-021-00255-0
Entropic-Wasserstein Barycenters: PDE Characterization, Regularity, and CLT
Guillaume Carlier, Katharina Eichinger and Alexey Kroshnin SIAM Journal on Mathematical Analysis 53 (5) 5880 (2021) https://doi.org/10.1137/20M1387262
General Construction and Classes of Explicit L 1 -optimal Couplings
Giovanni Puccetti and Ludger Rüschendorf SSRN Electronic Journal (2021) https://doi.org/10.2139/ssrn.3855631
A Stochastic Multi-layer Algorithm for Semi-discrete Optimal Transport with Applications to Texture Synthesis and Style Transfer
Arthur Leclaire and Julien Rabin Journal of Mathematical Imaging and Vision 63 (2) 282 (2021) https://doi.org/10.1007/s10851-020-00975-4
Barycenters in the Hellinger–Kantorovich Space
Nhan-Phu Chung and Minh-Nhat Phung Applied Mathematics & Optimization 84 (2) 1791 (2021) https://doi.org/10.1007/s00245-020-09695-y
Hardness results for Multimarginal Optimal Transport problems
Jason M. Altschuler and Enric Boix-Adserà Discrete Optimization 42 100669 (2021) https://doi.org/10.1016/j.disopt.2021.100669
Variational problems involving unequal dimensional optimal transport
Luca Nenna and Brendan Pass Journal de Mathématiques Pures et Appliquées 139 83 (2020) https://doi.org/10.1016/j.matpur.2020.05.004
Improved Linear Programs for Discrete Barycenters
Steffen Borgwardt and Stephan Patterson INFORMS Journal on Optimization 2 (1) 14 (2020) https://doi.org/10.1287/ijoo.2019.0020
On the computation of Wasserstein barycenters
Giovanni Puccetti, Ludger Rüschendorf and Steven Vanduffel Journal of Multivariate Analysis 176 104581 (2020) https://doi.org/10.1016/j.jmva.2019.104581
Fréchet means and Procrustes analysis in Wasserstein space
Yoav Zemel and Victor M. Panaretos Bernoulli 25 (2) (2019) https://doi.org/10.3150/17-BEJ1009
Wasserstein barycenters in the manifold of all positive definite matrices
Elham Nobari and Bijan Ahmadi Kakavandi Quarterly of Applied Mathematics 77 (3) 655 (2019) https://doi.org/10.1090/qam/1535
Robust clustering tools based on optimal transportation
E. del Barrio, J. A. Cuesta-Albertos, C. Matrán and A. Mayo-Íscar Statistics and Computing 29 (1) 139 (2019) https://doi.org/10.1007/s11222-018-9800-z
Data-driven regularization of Wasserstein barycenters with an application to multivariate density registration
Jérémie Bigot, Elsa Cazelles and Nicolas Papadakis Information and Inference: A Journal of the IMA 8 (4) 719 (2019) https://doi.org/10.1093/imaiai/iaz023
Wasserstein Dictionary Learning: Optimal Transport-Based Unsupervised Nonlinear Dictionary Learning
Morgan A. Schmitz, Matthieu Heitz, Nicolas Bonneel, et al. SIAM Journal on Imaging Sciences 11 (1) 643 (2018) https://doi.org/10.1137/17M1140431
Wide consensus aggregation in the Wasserstein space. Application to location-scatter families
Pedro C. Álvarez-Esteban, Eustasio del Barrio, Juan A. Cuesta-Albertos and Carlos Matrán Bernoulli 24 (4A) (2018) https://doi.org/10.3150/17-BEJ957
Semidual Regularized Optimal Transport
Marco Cuturi and Gabriel Peyré SIAM Review 60 (4) 941 (2018) https://doi.org/10.1137/18M1208654
On the computation of Wasserstein barycenters
Giovanni Puccetti, Ludger Rüschendorf and Steven Vanduffel SSRN Electronic Journal (2018) https://doi.org/10.2139/ssrn.3276147
Fast Discrete Distribution Clustering Using Wasserstein Barycenter With Sparse Support
Jianbo Ye, Panruo Wu, James Z. Wang and Jia Li IEEE Transactions on Signal Processing 65 (9) 2317 (2017) https://doi.org/10.1109/TSP.2017.2659647
A Smoothed Dual Approach for Variational Wasserstein Problems
Marco Cuturi and Gabriel Peyré SIAM Journal on Imaging Sciences 9 (1) 320 (2016) https://doi.org/10.1137/15M1032600
A fixed-point approach to barycenters in Wasserstein space
Pedro C. Álvarez-Esteban, E. del Barrio, J.A. Cuesta-Albertos and C. Matrán Journal of Mathematical Analysis and Applications 441 (2) 744 (2016) https://doi.org/10.1016/j.jmaa.2016.04.045
Splitting Methods in Communication, Imaging, Science, and Engineering
Jean-David Benamou, Guillaume Carlier and Luca Nenna Scientific Computation, Splitting Methods in Communication, Imaging, Science, and Engineering 577 (2016) https://doi.org/10.1007/978-3-319-41589-5_17
Convolutional wasserstein distances
Justin Solomon, Fernando de Goes, Gabriel Peyré, et al. ACM Transactions on Graphics 34 (4) 1 (2015) https://doi.org/10.1145/2766963
Multi-marginal optimal transport: Theory and applications
Brendan Pass ESAIM: Mathematical Modelling and Numerical Analysis 49 (6) 1771 (2015) https://doi.org/10.1051/m2an/2015020