Articles citing this article

The Citing articles tool gives a list of articles citing the current article.
The citing articles come from EDP Sciences database, as well as other publishers participating in CrossRef Cited-by Linking Program. You can set up your personal account to receive an email alert each time this article is cited by a new article (see the menu on the right-hand side of the abstract page).

Cited article:

Tensor-Product Space-Time Goal-Oriented Error Control and Adaptivity With Partition-of-Unity Dual-Weighted Residuals for Nonstationary Flow Problems

Julian Roth, Jan Philipp Thiele, Uwe Köcher and Thomas Wick
Computational Methods in Applied Mathematics 24 (1) 185 (2024)
https://doi.org/10.1515/cmam-2022-0200

Inf-sup stabilized Scott–Vogelius pairs on general shape-regular simplicial grids for Navier–Stokes equations

Naveed Ahmed, Volker John, Xu Li and Christian Merdon
Computers & Mathematics with Applications 168 148 (2024)
https://doi.org/10.1016/j.camwa.2024.05.034

A pressure-robust numerical scheme for the Stokes equations based on the WOPSIP DG approach

Yuping Zeng, Liuqiang Zhong, Feng Wang, Shangyou Zhang and Mingchao Cai
Journal of Computational and Applied Mathematics 445 115819 (2024)
https://doi.org/10.1016/j.cam.2024.115819

Analysis of a $$\varvec{P}_1\oplus \varvec{RT}_0$$ finite element method for linear elasticity with Dirichlet and mixed boundary conditions

Hongpeng Li, Xu Li and Hongxing Rui
Advances in Computational Mathematics 50 (1) (2024)
https://doi.org/10.1007/s10444-024-10107-w

A pressure-robust mixed finite element method for the coupled Stokes–Darcy problem

Deyong Lv and Hongxing Rui
Journal of Computational and Applied Mathematics 436 115444 (2024)
https://doi.org/10.1016/j.cam.2023.115444

An EMA-conserving, pressure-robust and Re-semi-robust method with A robust reconstruction method for Navier–Stokes

Xu Li and Hongxing Rui
ESAIM: Mathematical Modelling and Numerical Analysis 57 (2) 467 (2023)
https://doi.org/10.1051/m2an/2022093

Nonconforming Finite Element Methods of Order Two and Order Three for the Stokes Flow in Three Dimensions

Wei Chen, Jun Hu and Min Zhang
Journal of Scientific Computing 97 (1) (2023)
https://doi.org/10.1007/s10915-023-02317-z

Three interior penalty DG methods for stationary incompressible magnetohydrodynamics

Huayi Huang, Yunqing Huang and Xiaojing Dong
Journal of Computational and Applied Mathematics 425 115030 (2023)
https://doi.org/10.1016/j.cam.2022.115030

A pressure-robust virtual element method for the Navier-Stokes problem on polygonal mesh

Ying Wang, Gang Wang and Yue Shen
Computers & Mathematics with Applications 131 124 (2023)
https://doi.org/10.1016/j.camwa.2022.12.013

A DG Method for the Stokes Equations on Tensor Product Meshes with $$[P_k]^d-P_{k-1}$$ Element

Lin Mu, Xiu Ye, Shangyou Zhang and Peng Zhu
Communications on Applied Mathematics and Computation (2023)
https://doi.org/10.1007/s42967-022-00243-9

Pressure-Robustness in the Context of Optimal Control

Christian Merdon and Winnifried Wollner
SIAM Journal on Control and Optimization 61 (1) 342 (2023)
https://doi.org/10.1137/22M1482603

A pressure‐robust weak Galerkin finite element method for Navier–Stokes equations

Lin Mu
Numerical Methods for Partial Differential Equations 39 (3) 2327 (2023)
https://doi.org/10.1002/num.22969

On pressure robustness and independent determination of displacement and pressure in incompressible linear elasticity

Adam Zdunek, Michael Neunteufel and Waldemar Rachowicz
Computer Methods in Applied Mechanics and Engineering 403 115714 (2023)
https://doi.org/10.1016/j.cma.2022.115714

To ℘ or not to p – the mixed displacement–pressure p, versus the higher order ℘ displacement finite element formulation, for nearly incompressible linear elasticity

Adam Zdunek and Waldemar Rachowicz
Computers & Mathematics with Applications 148 313 (2023)
https://doi.org/10.1016/j.camwa.2023.08.025

Analysis and computation of a pressure-robust method for the rotation form of the incompressible Navier–Stokes equations with high-order finite elements

Di Yang, Yinnian He and Yarong Zhang
Computers & Mathematics with Applications 112 1 (2022)
https://doi.org/10.1016/j.camwa.2022.02.017

Non-standard Discretisation Methods in Solid Mechanics

Seshadri Basava, Katrin Mang, Mirjam Walloth, Thomas Wick and Winnifried Wollner
Lecture Notes in Applied and Computational Mechanics, Non-standard Discretisation Methods in Solid Mechanics 98 191 (2022)
https://doi.org/10.1007/978-3-030-92672-4_8

Guaranteed upper bounds for the velocity error of pressure-robust Stokes discretisations

Philip L. Lederer and Christian Merdon
Journal of Numerical Mathematics 30 (4) 267 (2022)
https://doi.org/10.1515/jnma-2021-0078

New stabilized P1 × P0 finite element methods for nearly inviscid and incompressible flows

Yuwen Li and Ludmil T. Zikatanov
Computer Methods in Applied Mechanics and Engineering 393 114815 (2022)
https://doi.org/10.1016/j.cma.2022.114815

A pressure robust staggered discontinuous Galerkin method for the Stokes equations

Lina Zhao, Eun-Jae Park and Eric Chung
Computers & Mathematics with Applications 128 163 (2022)
https://doi.org/10.1016/j.camwa.2022.10.019

A nonconforming pressure-robust finite element method for the Stokes equations on anisotropic meshes

Thomas Apel, Volker Kempf, Alexander Linke and Christian Merdon
IMA Journal of Numerical Analysis 42 (1) 392 (2022)
https://doi.org/10.1093/imanum/draa097

Divergence-preserving reconstructions on polygons and a really pressure-robust virtual element method for the Stokes problem

Derk Frerichs and Christian Merdon
IMA Journal of Numerical Analysis 42 (1) 597 (2022)
https://doi.org/10.1093/imanum/draa073

A low-order divergence-free H(div)-conforming finite element method for Stokes flows

Xu Li and Hongxing Rui
IMA Journal of Numerical Analysis 42 (4) 3711 (2022)
https://doi.org/10.1093/imanum/drab080

Locking-Free and Gradient-Robust $${\varvec{H}}({{\,\mathrm{{\text {div}}}\,}})$$-Conforming HDG Methods for Linear Elasticity

Guosheng Fu, Christoph Lehrenfeld, Alexander Linke and Timo Streckenbach
Journal of Scientific Computing 86 (3) (2021)
https://doi.org/10.1007/s10915-020-01396-6

Finite element approximation and preconditioning for anisothermal flow of implicitly-constituted non-Newtonian fluids

Patrick Farrell, Pablo Alexei Gazca Orozco and Endre Süli
Mathematics of Computation 91 (334) 659 (2021)
https://doi.org/10.1090/mcom/3703

Modular grad-div stabilization for the incompressible non-isothermal fluid flows

Mine Akbas and Leo G. Rebholz
Applied Mathematics and Computation 393 125748 (2021)
https://doi.org/10.1016/j.amc.2020.125748

Viscosity robust weak Galerkin finite element methods for Stokes problems

Bin Wang and Lin Mu
Electronic Research Archive 29 (1) 1881 (2021)
https://doi.org/10.3934/era.2020096

An a priori error analysis for a projection based variational multiscale finite element method for Oseen problems in a time-dependent domain

Birupaksha Pal and Sashikumaar Ganesan
Computers & Mathematics with Applications 82 130 (2021)
https://doi.org/10.1016/j.camwa.2020.10.025

A Pressure-Robust Discretization of Oseen's Equation Using Stabilization in the Vorticity Equation

Naveed Ahmed, Gabriel R. Barrenechea, Erik Burman, et al.
SIAM Journal on Numerical Analysis 59 (5) 2746 (2021)
https://doi.org/10.1137/20M1351230

A Stabilizer-Free, Pressure-Robust, and Superconvergence Weak Galerkin Finite Element Method for the Stokes Equations on Polytopal Mesh

Lin Mu, Xiu Ye and Shangyou Zhang
SIAM Journal on Scientific Computing 43 (4) A2614 (2021)
https://doi.org/10.1137/20M1380405

A Hellan--Herrmann--Johnson-like Method for the Stream Function Formulation of the Stokes Equations in Two and Three Space Dimensions

Philip L. Lederer
SIAM Journal on Numerical Analysis 59 (1) 503 (2021)
https://doi.org/10.1137/20M1338034

Development of Pressure-Robust Discontinuous Galerkin Finite Element Methods for the Stokes Problem

Lin Mu, Xiu Ye and Shangyou Zhang
Journal of Scientific Computing 89 (1) (2021)
https://doi.org/10.1007/s10915-021-01634-5

A pressure-robust virtual element method for the Stokes problem

Gang Wang, Lin Mu, Ying Wang and Yinnian He
Computer Methods in Applied Mechanics and Engineering 382 113879 (2021)
https://doi.org/10.1016/j.cma.2021.113879

A Pressure-Robust Embedded Discontinuous Galerkin Method for the Stokes Problem by Reconstruction Operators

Philip L. Lederer and Sander Rhebergen
SIAM Journal on Numerical Analysis 58 (5) 2915 (2020)
https://doi.org/10.1137/20M1318389

Quasi-optimal and pressure-robust discretizations of the Stokes equations by new augmented Lagrangian formulations

Christian Kreuzer and Pietro Zanotti
IMA Journal of Numerical Analysis 40 (4) 2553 (2020)
https://doi.org/10.1093/imanum/drz044

Divergence‐free tangential finite element methods for incompressible flows on surfaces

Philip L. Lederer, Christoph Lehrenfeld and Joachim Schöberl
International Journal for Numerical Methods in Engineering 121 (11) 2503 (2020)
https://doi.org/10.1002/nme.6317

A mass conserving mixed stress formulation for the Stokes equations

Joachim Schöberl, Philip L Lederer and Jay Gopalakrishnan
IMA Journal of Numerical Analysis 40 (3) 1838 (2020)
https://doi.org/10.1093/imanum/drz022

Finite Volumes for Complex Applications IX - Methods, Theoretical Aspects, Examples

Alexander Linke and Christian Merdon
Springer Proceedings in Mathematics & Statistics, Finite Volumes for Complex Applications IX - Methods, Theoretical Aspects, Examples 323 103 (2020)
https://doi.org/10.1007/978-3-030-43651-3_7

Pressure Robust Weak Galerkin Finite Element Methods for Stokes Problems

Lin Mu
SIAM Journal on Scientific Computing 42 (3) B608 (2020)
https://doi.org/10.1137/19M1266320

Refined a posteriori error estimation for classical and pressure-robust Stokes finite element methods

Philip Lukas Lederer, Christian Merdon and Joachim Schöberl
Numerische Mathematik 142 (3) 713 (2019)
https://doi.org/10.1007/s00211-019-01049-3

Finite elements for scalar convection-dominated equations and incompressible flow problems: a never ending story?

Volker John, Petr Knobloch and Julia Novo
Computing and Visualization in Science 19 (5-6) 47 (2018)
https://doi.org/10.1007/s00791-018-0290-5

The analogue of grad–div stabilization in DG methods for incompressible flows: Limiting behavior and extension to tensor-product meshes

Mine Akbas, Alexander Linke, Leo G. Rebholz and Philipp W. Schroeder
Computer Methods in Applied Mechanics and Engineering 341 917 (2018)
https://doi.org/10.1016/j.cma.2018.07.019

Quasi-optimality of a pressure-robust nonconforming finite element method for the Stokes-problem

A. Linke, C. Merdon, M. Neilan and F. Neumann
Mathematics of Computation 87 (312) 1543 (2018)
https://doi.org/10.1090/mcom/3344

On Really Locking-Free Mixed Finite Element Methods for the Transient Incompressible Stokes Equations

Naveed Ahmed, Alexander Linke and Christian Merdon
SIAM Journal on Numerical Analysis 56 (1) 185 (2018)
https://doi.org/10.1137/17M1112017

Polynomial robust stability analysis for $H$(div)-conforming finite elements for the Stokes equations

Philip L Lederer and Joachim Schöberl
IMA Journal of Numerical Analysis 38 (4) 1832 (2018)
https://doi.org/10.1093/imanum/drx051

Towards Pressure-Robust Mixed Methods for the Incompressible Navier–Stokes Equations

Naveed Ahmed, Alexander Linke and Christian Merdon
Computational Methods in Applied Mathematics 18 (3) 353 (2018)
https://doi.org/10.1515/cmam-2017-0047

Efficient and scalable discretization of the Navier–Stokes equations with LPS modeling

Ryadh Haferssas, Pierre Jolivet and Samuele Rubino
Computer Methods in Applied Mechanics and Engineering 333 371 (2018)
https://doi.org/10.1016/j.cma.2018.01.026

Towards computable flows and robust estimates for inf-sup stable FEM applied to the time-dependent incompressible Navier–Stokes equations

Philipp W. Schroeder, Christoph Lehrenfeld, Alexander Linke and Gert Lube
SeMA Journal 75 (4) 629 (2018)
https://doi.org/10.1007/s40324-018-0157-1

Pressure-robust analysis of divergence-free and conforming FEM for evolutionary incompressible Navier–Stokes flows

Philipp W. Schroeder and Gert Lube
Journal of Numerical Mathematics 25 (4) (2017)
https://doi.org/10.1515/jnma-2016-1101

Divergence-free Reconstruction Operators for Pressure-Robust Stokes Discretizations with Continuous Pressure Finite Elements

Philip L. Lederer, Alexander Linke, Christian Merdon and Joachim Schöberl
SIAM Journal on Numerical Analysis 55 (3) 1291 (2017)
https://doi.org/10.1137/16M1089964

On the Divergence Constraint in Mixed Finite Element Methods for Incompressible Flows

Volker John, Alexander Linke, Christian Merdon, Michael Neilan and Leo G. Rebholz
SIAM Review 59 (3) 492 (2017)
https://doi.org/10.1137/15M1047696

OptimalL2velocity error estimate for a modified pressure-robust Crouzeix–Raviart Stokes element

A. Linke, C. Merdon and W. Wollner
IMA Journal of Numerical Analysis 37 (1) 354 (2017)
https://doi.org/10.1093/imanum/drw019

Stabilised dG-FEM for incompressible natural convection flows with boundary and moving interior layers on non-adapted meshes

Philipp W. Schroeder and Gert Lube
Journal of Computational Physics 335 760 (2017)
https://doi.org/10.1016/j.jcp.2017.01.055

Finite Element Methods for Incompressible Flow Problems

Volker John
Springer Series in Computational Mathematics, Finite Element Methods for Incompressible Flow Problems 51 137 (2016)
https://doi.org/10.1007/978-3-319-45750-5_4

Inverse modeling of thin layer flow cells for detection of solubility, transport and reaction coefficients from experimental data

C. Merdon, J. Fuhrmann, A. Linke, et al.
Electrochimica Acta 211 1 (2016)
https://doi.org/10.1016/j.electacta.2016.05.101

A discontinuous skeletal method for the viscosity-dependent Stokes problem

Daniele A. Di Pietro, Alexandre Ern, Alexander Linke and Friedhelm Schieweck
Computer Methods in Applied Mechanics and Engineering 306 175 (2016)
https://doi.org/10.1016/j.cma.2016.03.033

Pressure-robustness and discrete Helmholtz projectors in mixed finite element methods for the incompressible Navier–Stokes equations

A. Linke and C. Merdon
Computer Methods in Applied Mechanics and Engineering 311 304 (2016)
https://doi.org/10.1016/j.cma.2016.08.018

Boundary and Interior Layers, Computational and Asymptotic Methods - BAIL 2014

Gert Lube, Daniel Arndt and Helene Dallmann
Lecture Notes in Computational Science and Engineering, Boundary and Interior Layers, Computational and Asymptotic Methods - BAIL 2014 108 147 (2015)
https://doi.org/10.1007/978-3-319-25727-3_12