Articles citing this article

The Citing articles tool gives a list of articles citing the current article.
The citing articles come from EDP Sciences database, as well as other publishers participating in CrossRef Cited-by Linking Program. You can set up your personal account to receive an email alert each time this article is cited by a new article (see the menu on the right-hand side of the abstract page).

Cited article:

A Hybrid High-Order Method for a Class of Strongly Nonlinear Elliptic Boundary Value Problems

Gouranga Mallik and Thirupathi Gudi
Journal of Scientific Computing 98 (1) (2024)
https://doi.org/10.1007/s10915-023-02390-4

Unified a priori analysis of four second-order FEM for fourth-order quadratic semilinear problems

Carsten Carstensen, Neela Nataraj, Gopikrishnan C. Remesan and Devika Shylaja
Numerische Mathematik 154 (3-4) 323 (2023)
https://doi.org/10.1007/s00211-023-01356-w

An adaptive C0 Interior Penalty Discontinuous Galerkin method and an equilibrated a posteriori error estimator for the von Kármán equations

R.H.W. Hoppe
Applied Numerical Mathematics 190 27 (2023)
https://doi.org/10.1016/j.apnum.2023.01.004

A space-time adaptive discontinuous Galerkin method for the numerical solution of the dynamic quasi-static von Kármán equations

R.H.W. Hoppe
Computers & Mathematics with Applications 132 32 (2023)
https://doi.org/10.1016/j.camwa.2022.12.005

Predicting Extreme Dynamic Response of Offshore Jacket Platform Subject to Harsh Environment

Saeed Khalaj, Farshad BahooToroody, Leonardo Leoni, et al.
Mathematical Problems in Engineering 2022 1 (2022)
https://doi.org/10.1155/2022/1622243

A Hybrid High-Order Method for Quasilinear Elliptic Problems of Nonmonotone Type

Thirupathi Gudi, Gouranga Mallik and Tamal Pramanick
SIAM Journal on Numerical Analysis 60 (4) 2318 (2022)
https://doi.org/10.1137/21M1412050

A posteriori error analysis for a distributed optimal control problem governed by the von Kármán equations

Sudipto Chowdhury, Asha K. Dond, Neela Nataraj and Devika Shylaja
ESAIM: Mathematical Modelling and Numerical Analysis 56 (5) 1655 (2022)
https://doi.org/10.1051/m2an/2022040

A virtual element method for the von Kármán equations

Carlo Lovadina, David Mora and Iván Velásquez
ESAIM: Mathematical Modelling and Numerical Analysis 55 (2) 533 (2021)
https://doi.org/10.1051/m2an/2020085

Morley finite element methods for the stationary quasi-geostrophic equation

Dohyun Kim, Amiya K. Pani and Eun-Jae Park
Computer Methods in Applied Mechanics and Engineering 375 113639 (2021)
https://doi.org/10.1016/j.cma.2020.113639

Hessian discretisation method for fourth-order semi-linear elliptic equations: applications to the von Kármán and Navier–Stokes models

Jérome Droniou, Neela Nataraj and Devika Shylaja
Advances in Computational Mathematics 47 (2) (2021)
https://doi.org/10.1007/s10444-020-09837-4

Adaptive Morley FEM for the von Kármán Equations with Optimal Convergence Rates

Carsten Carstensen and Neela Nataraj
SIAM Journal on Numerical Analysis 59 (2) 696 (2021)
https://doi.org/10.1137/20M1335613

Morley FEM for a Distributed Optimal Control Problem Governed by the von Kármán Equations

Sudipto Chowdhury, Neela Nataraj and Devika Shylaja
Computational Methods in Applied Mathematics 21 (1) 233 (2021)
https://doi.org/10.1515/cmam-2020-0030

Morley finite element method for the von Kármán obstacle problem

Carsten Carstensen, Sharat Gaddam, Neela Nataraj, Amiya K. Pani and Devika Shylaja
ESAIM: Mathematical Modelling and Numerical Analysis 55 (5) 1873 (2021)
https://doi.org/10.1051/m2an/2021042

Nonconforming finite element discretization for semilinear problems with trilinear nonlinearity

Carsten Carstensen, Gouranga Mallik and Neela Nataraj
IMA Journal of Numerical Analysis 41 (1) 164 (2021)
https://doi.org/10.1093/imanum/drz071

Finite element methods: Research in India over the last decade

Neela Nataraj and A. S. Vasudeva Murthy
Indian Journal of Pure and Applied Mathematics 50 (3) 739 (2019)
https://doi.org/10.1007/s13226-019-0352-5

A priori and a posteriori error control of discontinuous Galerkin finite element methods for the von Kármán equations

Carsten Carstensen, Gouranga Mallik and Neela Nataraj
IMA Journal of Numerical Analysis (2018)
https://doi.org/10.1093/imanum/dry003

Error estimates for the numerical approximation of a distributed optimal control problem governed by the von Kármán equations

Gouranga Mallik, Neela Nataraj and Jean-Pierre Raymond
ESAIM: Mathematical Modelling and Numerical Analysis 52 (3) 1137 (2018)
https://doi.org/10.1051/m2an/2018023

Conforming and nonconforming finite element methods for canonical von Kármán equations

Gouranga Mallik and Neela Nataraj
International Journal of Advances in Engineering Sciences and Applied Mathematics 7 (3) 86 (2015)
https://doi.org/10.1007/s12572-015-0137-y