Articles citing this article

The Citing articles tool gives a list of articles citing the current article.
The citing articles come from EDP Sciences database, as well as other publishers participating in CrossRef Cited-by Linking Program. You can set up your personal account to receive an email alert each time this article is cited by a new article (see the menu on the right-hand side of the abstract page).

Cited article:

Implicit–explicit Crank–Nicolson scheme for Oseen’s equation at high Reynolds number

Erik Burman, Deepika Garg and Johnny Guzman
Mathematical Models and Methods in Applied Sciences 34 (14) 2709 (2024)
https://doi.org/10.1142/S021820252450057X

Convergence Analysis of an Unfitted Mesh Semi-implicit Coupling Scheme for Incompressible Fluid-Structure Interaction

Erik Burman, Miguel A. Fernández and Fannie M. Gerosa
Vietnam Journal of Mathematics 51 (1) 37 (2023)
https://doi.org/10.1007/s10013-022-00589-w

Implicit-Explicit Time Discretization for Oseen’s Equation at High Reynolds Number with Application to Fractional Step Methods

Erik Burman, Deepika Garg and Johnny Guzman
SIAM Journal on Numerical Analysis 61 (6) 2859 (2023)
https://doi.org/10.1137/23M1547573

The nonconforming virtual element method for Oseen’s equation using a stream-function formulation

Dibyendu Adak and Gianmarco Manzini
ESAIM: Mathematical Modelling and Numerical Analysis 57 (6) 3303 (2023)
https://doi.org/10.1051/m2an/2023075

Implicit-explicit multistep formulations for finite element discretisations using continuous interior penalty

Erik Burman and Johnny Guzmán
ESAIM: Mathematical Modelling and Numerical Analysis 56 (1) 349 (2022)
https://doi.org/10.1051/m2an/2021084

Gradient jump penalty stabilisation of spectral/hp element discretisation for under-resolved turbulence simulations

Rodrigo C. Moura, Andrea Cassinelli, André F.C. da Silva, Erik Burman and Spencer J. Sherwin
Computer Methods in Applied Mechanics and Engineering 388 114200 (2022)
https://doi.org/10.1016/j.cma.2021.114200

Error Analysis of Proper Orthogonal Decomposition Stabilized Methods for Incompressible Flows

Julia Novo and Samuele Rubino
SIAM Journal on Numerical Analysis 59 (1) 334 (2021)
https://doi.org/10.1137/20M1341866

On the convergence order of the finite element error in the kinetic energy for high Reynolds number incompressible flows

Bosco García-Archilla, Volker John and Julia Novo
Computer Methods in Applied Mechanics and Engineering 385 114032 (2021)
https://doi.org/10.1016/j.cma.2021.114032

Numerical Analysis of a Projection-Based Stabilized POD-ROM for Incompressible Flows

Samuele Rubino
SIAM Journal on Numerical Analysis 58 (4) 2019 (2020)
https://doi.org/10.1137/19M1276686

Projection-based reduced order models for a cut finite element method in parametrized domains

Efthymios N. Karatzas, Francesco Ballarin and Gianluigi Rozza
Computers & Mathematics with Applications 79 (3) 833 (2020)
https://doi.org/10.1016/j.camwa.2019.08.003

Fully Discrete Approximations to the Time-Dependent Navier–Stokes Equations with a Projection Method in Time and Grad-Div Stabilization

Javier de Frutos, Bosco García-Archilla and Julia Novo
Journal of Scientific Computing 80 (2) 1330 (2019)
https://doi.org/10.1007/s10915-019-00980-9

On reference solutions and the sensitivity of the 2D Kelvin–Helmholtz instability problem

Philipp W. Schroeder, Volker John, Philip L. Lederer, Christoph Lehrenfeld, Gert Lube and Joachim Schöberl
Computers & Mathematics with Applications 77 (4) 1010 (2019)
https://doi.org/10.1016/j.camwa.2018.10.030

Analysis and Approximation of a Vorticity–Velocity–Pressure Formulation for the Oseen Equations

V. Anaya, A. Bouharguane, D. Mora, et al.
Journal of Scientific Computing 80 (3) 1577 (2019)
https://doi.org/10.1007/s10915-019-00990-7

Finite elements for scalar convection-dominated equations and incompressible flow problems: a never ending story?

Volker John, Petr Knobloch and Julia Novo
Computing and Visualization in Science 19 (5-6) 47 (2018)
https://doi.org/10.1007/s00791-018-0290-5