Articles citing this article

The Citing articles tool gives a list of articles citing the current article.
The citing articles come from EDP Sciences database, as well as other publishers participating in CrossRef Cited-by Linking Program. You can set up your personal account to receive an email alert each time this article is cited by a new article (see the menu on the right-hand side of the abstract page).

Cited article:

A linearizing-decoupling finite element method with stabilization for the Peterlin viscoelastic model

Lekang Xia and Guanyu Zhou
Japan Journal of Industrial and Applied Mathematics 41 (2) 789 (2024)
https://doi.org/10.1007/s13160-023-00629-z

A Two-Step Lagrange–Galerkin Scheme for the Shallow Water Equations with a Transmission Boundary Condition and Its Application to the Bay of Bengal Region—Part I: Flat Bottom Topography

Md Mamunur Rasid, Masato Kimura, Md Masum Murshed, Erny Rahayu Wijayanti and Hirofumi Notsu
Mathematics 11 (7) 1633 (2023)
https://doi.org/10.3390/math11071633

A fully discrete two-grid method for the diffusive Peterlin viscoelastic model

Jing-Yu Yang, Yao-Lin Jiang and Jun Li
Computers & Mathematics with Applications 119 118 (2022)
https://doi.org/10.1016/j.camwa.2022.05.028

A Mass-Preserving Two-Step Lagrange–Galerkin Scheme for Convection-Diffusion Problems

Kouta Futai, Niklas Kolbe, Hirofumi Notsu and Tasuku Suzuki
Journal of Scientific Computing 92 (2) (2022)
https://doi.org/10.1007/s10915-022-01885-w

Second-Order Finite Difference Approximations of the Upper-Convected Time Derivative

Debora D. Medeiros, Hirofumi Notsu and Cassio M. Oishi
SIAM Journal on Numerical Analysis 59 (6) 2955 (2021)
https://doi.org/10.1137/20M1364990

Analysis of Stabilized Crank-Nicolson Time-Stepping Scheme for the Evolutionary Peterlin Viscoelastic Model

S. S. Ravindran
Numerical Functional Analysis and Optimization 41 (13) 1611 (2020)
https://doi.org/10.1080/01630563.2020.1789165

Stability and convergence of first order time discrete linearized pressure correction projection method for the diffusive Peterlin viscoelastic model

Yunzhang Zhang
Applied Numerical Mathematics 139 93 (2019)
https://doi.org/10.1016/j.apnum.2018.12.011

A conservative scheme for the Fokker–Planck equation with applications to viscoelastic polymeric fluids

Hana Mizerová and Bangwei She
Journal of Computational Physics 374 941 (2018)
https://doi.org/10.1016/j.jcp.2018.08.015

Semi-Discrete Galerkin Finite Element Method for the Diffusive Peterlin Viscoelastic Model

Yao-Lin Jiang and Yun-Bo Yang
Computational Methods in Applied Mathematics 18 (2) 275 (2018)
https://doi.org/10.1515/cmam-2017-0021

Numerical analysis of the Oseen-type Peterlin viscoelastic model by the stabilized Lagrange–Galerkin method. Part II: A linear scheme

Mária Lukáčová–Medvid’ová, Hana Mizerová, Hirofumi Notsu and Masahisa Tabata
ESAIM: Mathematical Modelling and Numerical Analysis 51 (5) 1663 (2017)
https://doi.org/10.1051/m2an/2017032

Numerical analysis of the Oseen-type Peterlin viscoelastic model by the stabilized Lagrange–Galerkin method. Part I: A nonlinear scheme

Mária Lukáčová–Medvid’ová, Hana Mizerová, Hirofumi Notsu and Masahisa Tabata
ESAIM: Mathematical Modelling and Numerical Analysis 51 (5) 1637 (2017)
https://doi.org/10.1051/m2an/2016078