Articles citing this article

The Citing articles tool gives a list of articles citing the current article.
The citing articles come from EDP Sciences database, as well as other publishers participating in CrossRef Cited-by Linking Program. You can set up your personal account to receive an email alert each time this article is cited by a new article (see the menu on the right-hand side of the abstract page).

Cited article:

This article has been cited by the following article(s):

Explicit div-curl inequalities in bounded and unbounded domains of $${{\mathbb {R}}}^3$$ R 3

Tahar Zamene Boulmezaoud, Keltoum Kaliche and Nabil Kerdid
DOI: 10.1007/s11565-016-0266-7
See this article

Solving exterior Neumann boundary value problems for Beltrami fields through the Beltrami system

Simopekka Vänskä
Journal of Integral Equations and Applications 22 (4) (2010)
DOI: 10.1216/JIE-2010-22-4-591
See this article

Approximation of linear force-free fields in bounded 3-D domains

T.Z. Boulmezaoud and T. amari
Mathematical and Computer Modelling 31 (2-3) 109 (2000)
DOI: 10.1016/S0895-7177(99)00227-7
See this article

A finite-element method for computing nonlinear force-free fields

T.Z. Boulmezaoud and T. Amari
Mathematical and Computer Modelling 34 (7-8) 903 (2001)
DOI: 10.1016/S0895-7177(01)00108-X
See this article

Computing Beltrami Fields

Tahar Amari, Cédric Boulbe and Tahar Zamène Boulmezaoud
SIAM Journal on Scientific Computing 31 (5) 3217 (2009)
DOI: 10.1137/070700942
See this article

A relaxation method for constructing a Beltrami flow in a bounded domain

Takahiro Nishiyama
Journal of Mathematical Physics 46 (8) 083102 (2005)
DOI: 10.1063/1.1996440
See this article

An Existence Theory for Small-Amplitude Doubly Periodic Water Waves with Vorticity

E. Lokharu, D. S. Seth and E. Wahlén
Archive for Rational Mechanics and Analysis 238 (2) 607 (2020)
DOI: 10.1007/s00205-020-01550-2
See this article

Time domain study of the Drude-Born-Fedorov model for a class of heterogeneous chiral materials

Serge Nicaise
Mathematical Methods in the Applied Sciences 36 (7) 794 (2013)
DOI: 10.1002/mma.2627
See this article

A Right Inverse Operator for $${\text {curl}}+\lambda $$ curl + λ and Applications

Briceyda B. Delgado and Vladislav V. Kravchenko
Advances in Applied Clifford Algebras 29 (3) (2019)
DOI: 10.1007/s00006-019-0958-z
See this article

Construction of three–dimensional stationary Euler flows from pseudo–advected vorticity equations

Takahiro Nishiyama
Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences 459 (2038) 2393 (2003)
DOI: 10.1098/rspa.2003.1132
See this article


Mathematical Models and Methods in Applied Sciences 17 (03) 461 (2007)
DOI: 10.1142/S0218202507001991
See this article

Determining the Transport of Magnetic Helicity and Free Energy in the Sun’s Atmosphere

Peter W. Schuck and Spiro K. Antiochos
The Astrophysical Journal 882 (2) 151 (2019)
DOI: 10.3847/1538-4357/ab298a
See this article

On an Interior Calderón Operator and a Related Steklov Eigenproblem for Maxwell's Equations

Pier Domenico Lamberti and Ioannis G. Stratis
SIAM Journal on Mathematical Analysis 52 (5) 4140 (2020)
DOI: 10.1137/19M1251370
See this article

Finite Element Approximation of the Spectrum of the Curl Operator in a Multiply Connected Domain

A. Alonso-Rodríguez, J. Camaño, R. Rodríguez, A. Valli and P. Venegas
Foundations of Computational Mathematics 18 (6) 1493 (2018)
DOI: 10.1007/s10208-018-9373-4
See this article

Numerical Mathematics and Advanced Applications

C. Boulbe, T.Z. Boulmezaoud and T. Amari
Numerical Mathematics and Advanced Applications 917 (2006)
DOI: 10.1007/978-3-540-34288-5_91
See this article

A variational principle for three-dimensional water waves over Beltrami flows

E. Lokharu and E. Wahlén
Nonlinear Analysis 184 193 (2019)
DOI: 10.1016/
See this article

The Dirichlet Problem for Elliptic-Hyperbolic Equations of Keldysh Type

Thomas H. Otway
Lecture Notes in Mathematics, The Dirichlet Problem for Elliptic-Hyperbolic Equations of Keldysh Type 2043 47 (2012)
DOI: 10.1007/978-3-642-24415-5_3
See this article