Articles citing this article

The Citing articles tool gives a list of articles citing the current article.
The citing articles come from EDP Sciences database, as well as other publishers participating in CrossRef Cited-by Linking Program. You can set up your personal account to receive an email alert each time this article is cited by a new article (see the menu on the right-hand side of the abstract page).

Cited article:

Space-Time Approximation of Local Strong Solutions to the 3D Stochastic Navier–Stokes Equations

Dominic Breit and Alan Dodgson
Computational Methods in Applied Mathematics (2023)
https://doi.org/10.1515/cmam-2023-0052

Error Analysis for 2D Stochastic Navier–Stokes Equations in Bounded Domains with Dirichlet Data

Dominic Breit and Andreas Prohl
Foundations of Computational Mathematics (2023)
https://doi.org/10.1007/s10208-023-09621-y

On the zeroth law of turbulence for the stochastically forced Navier-Stokes equations

Yat Tin Chow and Ali Pakzad
Discrete and Continuous Dynamical Systems - B 27 (9) 5181 (2022)
https://doi.org/10.3934/dcdsb.2021270

A Stochastic Maximum Principle for Control Problems Constrained by the Stochastic Navier–Stokes Equations

Peter Benner and Christoph Trautwein
Applied Mathematics & Optimization 84 (S1) 1001 (2021)
https://doi.org/10.1007/s00245-021-09792-6

Global well‐posedness for the stochastic non‐Newtonian fluid equations and convergence to the Navier‐Stokes equations

Marco Henandez and Phuong Nguyen
Mathematical Methods in the Applied Sciences 44 (2) 1252 (2021)
https://doi.org/10.1002/mma.6827

On the Well-Posedness of Stochastic Boussinesq Equations with Transport Noise

Diego Alonso-Orán and Aythami Bethencourt de León
Journal of Nonlinear Science 30 (1) 175 (2020)
https://doi.org/10.1007/s00332-019-09571-2

Optimal control problems constrained by the stochastic Navier–Stokes equations with multiplicative Lévy noise

Peter Benner and Christoph Trautwein
Mathematische Nachrichten 292 (7) 1444 (2019)
https://doi.org/10.1002/mana.201700185

Local strong solutions to the stochastic compressible Navier–Stokes system

Dominic Breit, Eduard Feireisl and Martina Hofmanová
Communications in Partial Differential Equations 43 (2) 313 (2018)
https://doi.org/10.1080/03605302.2018.1442476

Local martingale solutions to the stochastic two layer shallow water equations with multiplicative white noise

Joshua Link, Phuong Nguyen and Roger Temam
Journal of Mathematical Analysis and Applications 461 (1) 701 (2018)
https://doi.org/10.1016/j.jmaa.2017.10.045

$\mathbb{L}^p-$solutions of the stochastic Navier-Stokes equations subject to Lévy noise with $\mathbb{L}^m(\mathbb{R}^m)$ initial data

Manil T. Mohan and Sivaguru S. Sritharan
Evolution Equations & Control Theory 6 (3) 409 (2017)
https://doi.org/10.3934/eect.2017021

Local martingale solutions to the stochastic one layer shallow water equations

Joshua Link, Phuong Nguyen and Roger Temam
Journal of Mathematical Analysis and Applications 448 (1) 93 (2017)
https://doi.org/10.1016/j.jmaa.2016.10.036

Mild solutions of stochastic Navier‐Stokes equation with jump noise in ‐spaces

B. P. W. Fernando, B. Rüdiger and S. S. Sritharan
Mathematische Nachrichten 288 (14-15) 1615 (2015)
https://doi.org/10.1002/mana.201300248

Strong solutions to stochastic hydrodynamical systems with multiplicative noise of jump type

Hakima Bessaih, Erika Hausenblas and Paul André Razafimandimby
Nonlinear Differential Equations and Applications NoDEA 22 (6) 1661 (2015)
https://doi.org/10.1007/s00030-015-0339-9

Pathwise solutions and attractors for retarded SPDEs with time smooth diffusion coefficients

Hakima Bessaih, María Garrido–Atienza and Björn Schmalfuss
Discrete and Continuous Dynamical Systems 34 (10) 3945 (2014)
https://doi.org/10.3934/dcds.2014.34.3945

Local and global existence of smooth solutions for the stochastic Euler equations with multiplicative noise

Nathan E. Glatt-Holtz and Vlad C. Vicol
The Annals of Probability 42 (1) (2014)
https://doi.org/10.1214/12-AOP773

Global existence and regularity for the 3D stochastic primitive equations of the ocean and atmosphere with multiplicative white noise

A Debussche, N Glatt-Holtz, R Temam and M Ziane
Nonlinearity 25 (7) 2093 (2012)
https://doi.org/10.1088/0951-7715/25/7/2093

Local martingale and pathwise solutions for an abstract fluids model

Arnaud Debussche, Nathan Glatt-Holtz and Roger Temam
Physica D: Nonlinear Phenomena 240 (14-15) 1123 (2011)
https://doi.org/10.1016/j.physd.2011.03.009