The Citing articles tool gives a list of articles citing the current article.
The citing articles come from EDP Sciences database, as well as other publishers participating in CrossRef Cited-by Linking Program. You can set up your personal account to receive an email alert each time this article is cited by a new article (see the menu on the right-hand side of the abstract page).
Cited article:
Charles-Henri Bruneau
ESAIM: M2AN, 34 2 (2000) 303-314
Published online: 2002-04-15
This article has been cited by the following article(s):
The Aerodynamics of Heavy Vehicles III
Charles-Henri Bruneau, Emmanuel Creusé, Delphine Depeyras, Patrick Gilliéron and Iraj Mortazavi
Lecture Notes in Applied and Computational Mechanics, The Aerodynamics of Heavy Vehicles III 79 363 (2016)
DOI: 10.1007/978-3-319-20122-1_23
See this article
Stability of a finite element method for 3D exterior stationary Navier-Stokes flows
Paul Deuring
Applications of Mathematics 52 (1) 59 (2007)
DOI: 10.1007/s10492-007-0003-8
See this article
Influence of the filtering tools on the analysis of two-dimensional turbulent flows
Charles-Henri Bruneau and Patrick Fischer
Computers & Fluids 38 (7) 1324 (2009)
DOI: 10.1016/j.compfluid.2008.01.035
See this article
Numerical Treatment of Defective Boundary Conditions for the Navier--Stokes Equations
L. Formaggia, J. F. Gerbeau, F. Nobile and A. Quarteroni
SIAM Journal on Numerical Analysis 40 (1) 376 (2002)
DOI: 10.1137/S003614290038296X
See this article
Front-tracking by the level-set and the volume penalization methods in a two-phase microfluidic network
Johana Pinilla, Charles-Henri Bruneau and Sandra Tancogne
International Journal for Numerical Methods in Fluids 80 (1) 23 (2016)
DOI: 10.1002/fld.4069
See this article
A Sharp-Interface Active Penalty Method for the Incompressible Navier–Stokes Equations
D. Shirokoff and J.-C. Nave
Journal of Scientific Computing 62 (1) 53 (2015)
DOI: 10.1007/s10915-014-9849-6
See this article
Revisiting open boundary conditions from the point of view of characteristic variables
E. Blayo and L. Debreu
Ocean Modelling 9 (3) 231 (2005)
DOI: 10.1016/j.ocemod.2004.07.001
See this article
Efficiency of Multiscale Hybrid Grid-Particle Vortex Methods
M. El Ossmani and P. Poncet
Multiscale Modeling & Simulation 8 (5) 1671 (2010)
DOI: 10.1137/090765006
See this article
Artificial boundaries and formulations for the incompressible Navier–Stokes equations: applications to air and blood flows
Justine Fouchet-Incaux
SeMA Journal 64 (1) 1 (2014)
DOI: 10.1007/s40324-014-0012-y
See this article
Flow analysis of square-back simplified vehicles in platoon
Charles-Henri Bruneau, Khodor Khadra and Iraj Mortazavi
International Journal of Heat and Fluid Flow 66 43 (2017)
DOI: 10.1016/j.ijheatfluidflow.2017.05.008
See this article
On pressure boundary conditions for steady flows of incompressible fluids with pressure and shear rate dependent viscosities
Martin Lanzendörfer and Jan Stebel
Applications of Mathematics 56 (3) 265 (2011)
DOI: 10.1007/s10492-011-0016-1
See this article
Upward versus downward non-Boussinesq turbulent fountains
Samuel Vaux, Rabah Mehaddi, Olivier Vauquelin and Fabien Candelier
Journal of Fluid Mechanics 867 374 (2019)
DOI: 10.1017/jfm.2019.149
See this article
Highly parallel computing of a multigrid solver for 3D Navier–Stokes equations
Charles-Henri Bruneau and Khodor Khadra
Journal of Computational Science 17 35 (2016)
DOI: 10.1016/j.jocs.2016.09.005
See this article
An interior penalty discontinuous Galerkin approach for 3D incompressible Navier–Stokes equation for permeability estimation of porous media
Chen Liu, Florian Frank, Faruk O. Alpak and Béatrice Rivière
Journal of Computational Physics 396 669 (2019)
DOI: 10.1016/j.jcp.2019.06.052
See this article
The Perfectly Matched Layer absorbing boundary for fluid–structure interactions using the Immersed Finite Element Method
Jubiao Yang, Feimi Yu, Michael Krane and Lucy T. Zhang
Journal of Fluids and Structures 76 135 (2018)
DOI: 10.1016/j.jfluidstructs.2017.09.002
See this article
DDFV method for Navier–Stokes problem with outflow boundary conditions
Thierry Goudon, Stella Krell and Giulia Lissoni
Numerische Mathematik 142 (1) 55 (2019)
DOI: 10.1007/s00211-018-1014-y
See this article
A versatile incompressible Navier–Stokes solver for blood flow application
M. Garbey and F. Pacull
International Journal for Numerical Methods in Fluids 54 (5) 473 (2007)
DOI: 10.1002/fld.1405
See this article
Computational Fluid Dynamics 2006
Ch.-H. Bruneau, P. Fischer and H. Kellay
Computational Fluid Dynamics 2006 409 (2009)
DOI: 10.1007/978-3-540-92779-2_63
See this article
The steady Navier–Stokes/energy system with temperature-dependent viscosity—Part 2: The discrete problem and numerical experiments
Carlos E. Pérez, Jean-Marie Thomas, Serge Blancher and René Creff
International Journal for Numerical Methods in Fluids 56 (1) 91 (2008)
DOI: 10.1002/fld.1572
See this article
Progress in Turbulence II
Ch.-H. Bruneau, P. Fischer and H. Kellay
Springer Proceedings in Physics, Progress in Turbulence II 109 109 (2007)
DOI: 10.1007/978-3-540-32603-8_22
See this article
Artificial boundary conditions for the Burgers equation on the plane
Nadaniela Egidi and Pierluigi Maponi
Applied Mathematics and Computation 286 1 (2016)
DOI: 10.1016/j.amc.2016.04.008
See this article
Traction open boundary condition for incompressible, turbulent, single- or multi-phase flows, and surface wave simulations
Cyril Bozonnet, Olivier Desjardins and Guillaume Balarac
Journal of Computational Physics 443 110528 (2021)
DOI: 10.1016/j.jcp.2021.110528
See this article
Comparison between direct numerical simulations and effective models for fluid-porous flows using penalization
Charles-Henri Bruneau, Didier Lasseux and Francisco J. Valdés-Parada
Meccanica 55 (5) 1061 (2020)
DOI: 10.1007/s11012-020-01149-7
See this article
Eric Blayo and Laurent Debreu
127 (2006)
DOI: 10.1007/1-4020-4028-8_5
See this article
Theoretical model of continuous inertial gravity currents including a jump condition
Safir Haddad, Samuel Vaux, Kevin Varrall and Olivier Vauquelin
Physical Review Fluids 7 (8) (2022)
DOI: 10.1103/PhysRevFluids.7.084802
See this article