Articles citing this article

The Citing articles tool gives a list of articles citing the current article.
The citing articles come from EDP Sciences database, as well as other publishers participating in CrossRef Cited-by Linking Program. You can set up your personal account to receive an email alert each time this article is cited by a new article (see the menu on the right-hand side of the abstract page).

Cited article:

Optimal L2 error estimates of mass- and energy- conserved FE schemes for a nonlinear Schrödinger–type system

Zhuoyue Zhang and Wentao Cai
Journal of Computational and Applied Mathematics 457 116313 (2025)
https://doi.org/10.1016/j.cam.2024.116313

Efficient numerical approximations for a nonconservative nonlinear Schrödinger equation appearing in wind‐forced ocean waves

Agissilaos Athanassoulis, Theodoros Katsaounis and Irene Kyza
Studies in Applied Mathematics 153 (4) (2024)
https://doi.org/10.1111/sapm.12774

A novel multilevel finite element method for a generalized nonlinear Schrödinger equation

Fei Xu, Yasai Guo and Manting Xie
Journal of Computational and Applied Mathematics 116280 (2024)
https://doi.org/10.1016/j.cam.2024.116280

Uniform L∞-bounds for energy-conserving higher-order time integrators for the Gross–Pitaevskii equation with rotation

Christian Döding and Patrick Henning
IMA Journal of Numerical Analysis 44 (5) 2892 (2024)
https://doi.org/10.1093/imanum/drad081

High-Order Mass- and Energy-Conserving Methods for the Nonlinear Schrödinger Equation

Genming Bai, Jiashun Hu and Buyang Li
SIAM Journal on Scientific Computing 46 (2) A1026 (2024)
https://doi.org/10.1137/22M152178X

On the convergence of a linearly implicit finite element method for the nonlinear Schrödinger equation

Mohammad Asadzadeh and Georgios E. Zouraris
Studies in Applied Mathematics (2024)
https://doi.org/10.1111/sapm.12743

A two level approach for simulating Bose–Einstein condensates by Localized Orthogonal Decomposition

Christian Döding, Patrick Henning, Johan Wärnegård, M. Picasso, A. Buffa, F. Nobile, S. Deparis, D. Kressner and J. Hesthaven
ESAIM: Mathematical Modelling and Numerical Analysis 58 (6) 2317 (2024)
https://doi.org/10.1051/m2an/2024040

Unconditional optimal error estimates of a linearized mass- and energy- conservation FEM for a coupled nonlinear Schrödinger equations

Qinlong Li and Yu Li
Communications in Nonlinear Science and Numerical Simulation 124 107297 (2023)
https://doi.org/10.1016/j.cnsns.2023.107297

A novel, structure-preserving, second-order-in-time relaxation scheme for Schrödinger-Poisson systems

Agissilaos Athanassoulis, Theodoros Katsaounis, Irene Kyza and Stephen Metcalfe
Journal of Computational Physics 490 112307 (2023)
https://doi.org/10.1016/j.jcp.2023.112307

Error Estimation of the Relaxation Finite Difference Scheme for the Nonlinear Schrödinger Equation

Georgios E. Zouraris
SIAM Journal on Numerical Analysis 61 (1) 365 (2023)
https://doi.org/10.1137/21M1399130

Implicit-Explicit Finite Difference Approximations of a Semilinear Heat Equation with Logarithmic Nonlinearity

Panagiotis Paraschis and Georgios E. Zouraris
Computational Methods in Applied Mathematics 23 (3) 695 (2023)
https://doi.org/10.1515/cmam-2022-0217

Unconditionally optimal error estimate of mass- and energy-stable Galerkin method for Schrödinger equation with cubic nonlinearity

Huaijun Yang
Applied Numerical Mathematics 183 39 (2023)
https://doi.org/10.1016/j.apnum.2022.08.016

A linearized compact ADI numerical method for the two-dimensional nonlinear delayed Schrödinger equation

Hongyu Qin, Fengyan Wu and Deng Ding
Applied Mathematics and Computation 412 126580 (2022)
https://doi.org/10.1016/j.amc.2021.126580

Error estimates of second-order BDF Galerkin finite element methods for a coupled nonlinear Schrödinger system

Yanhua Mei and Rong An
Computers & Mathematics with Applications 122 117 (2022)
https://doi.org/10.1016/j.camwa.2022.07.018

Unconditional optimal error estimates of linearized backward Euler Galerkin FEMs for nonlinear Schrödinger-Helmholtz equations

Yun-Bo Yang and Yao-Lin Jiang
Numerical Algorithms 86 (4) 1495 (2021)
https://doi.org/10.1007/s11075-020-00942-5

Error estimation of the Besse Relaxation Scheme for a semilinear heat equation

Georgios E. Zouraris
ESAIM: Mathematical Modelling and Numerical Analysis 55 (1) 301 (2021)
https://doi.org/10.1051/m2an/2020077

Second-Order SAV Schemes for the Nonlinear Schrödinger Equation and Their Error Analysis

Beichuan Deng, Jie Shen and Qingqu Zhuang
Journal of Scientific Computing 88 (3) (2021)
https://doi.org/10.1007/s10915-021-01576-y

A note on optimal $$H^1$$-error estimates for Crank-Nicolson approximations to the nonlinear Schrödinger equation

Patrick Henning and Johan Wärnegård
BIT Numerical Mathematics 61 (1) 37 (2021)
https://doi.org/10.1007/s10543-020-00814-3

Superconvergence of time invariants for the Gross–Pitaevskii equation

Patrick Henning and Johan Wärnegård
Mathematics of Computation 91 (334) 509 (2021)
https://doi.org/10.1090/mcom/3693

Nonconforming finite element method for a generalized nonlinear Schrödinger equation

Houchao Zhang, Dongyang Shi and Qingfu Li
Applied Mathematics and Computation 377 125141 (2020)
https://doi.org/10.1016/j.amc.2020.125141

A Schrödinger-type algorithm for solving the Schrödinger equations via Phragmén–Lindelöf inequalities

Lingling Zhao
Journal of Inequalities and Applications 2019 (1) (2019)
https://doi.org/10.1186/s13660-019-2098-3

Unconditionally optimal error estimates of a new mixed FEM for nonlinear Schrödinger equations

Dongyang Shi and Huaijun Yang
Advances in Computational Mathematics 45 (5-6) 3173 (2019)
https://doi.org/10.1007/s10444-019-09732-7

Approximating the Nonlinear Schrödinger Equation by a Two Level Linearly Implicit Finite Element Method

M. Asadzadeh and C. Standar
Journal of Mathematical Sciences 239 (3) 233 (2019)
https://doi.org/10.1007/s10958-019-04301-1

Superconvergence analysis of Crank‐Nicolson Galerkin FEMs for a generalized nonlinear Schrödinger equation

Houchao Zhang and Junjun Wang
Numerical Methods for Partial Differential Equations 34 (2) 799 (2018)
https://doi.org/10.1002/num.22230

Low order nonconforming finite element method for time-dependent nonlinear Schrödinger equation

Chao Xu, Jiaquan Zhou, Dongyang Shi and Houchao Zhang
Boundary Value Problems 2018 (1) (2018)
https://doi.org/10.1186/s13661-018-1093-9

Unconditional stability and convergence of Crank–Nicolson Galerkin FEMs for a nonlinear Schrödinger–Helmholtz system

Jilu Wang
Numerische Mathematik 139 (2) 479 (2018)
https://doi.org/10.1007/s00211-017-0944-0

Unconditional optimal error estimates for BDF2-FEM for a nonlinear Schrödinger equation

Wentao Cai, Jian Li and Zhangxin Chen
Journal of Computational and Applied Mathematics 331 23 (2018)
https://doi.org/10.1016/j.cam.2017.09.010

A Posteriori Error Analysis for Evolution Nonlinear Schrödinger Equations up to the Critical Exponent

Theodoros Katsaounis and Irene Kyza
SIAM Journal on Numerical Analysis 56 (3) 1405 (2018)
https://doi.org/10.1137/16M1108029

Crank–Nicolson Galerkin approximations to nonlinear Schrödinger equations with rough potentials

Patrick Henning and Daniel Peterseim
Mathematical Models and Methods in Applied Sciences 27 (11) 2147 (2017)
https://doi.org/10.1142/S0218202517500415

Optimal error analysis of Crank–Nicolson schemes for a coupled nonlinear Schrödinger system in 3D

Weiwei Sun and Jilu Wang
Journal of Computational and Applied Mathematics 317 685 (2017)
https://doi.org/10.1016/j.cam.2016.12.004

The Finite Element Method for the Time-Dependent Gross--Pitaevskii Equation with Angular Momentum Rotation

Patrick Henning and Axel Målqvist
SIAM Journal on Numerical Analysis 55 (2) 923 (2017)
https://doi.org/10.1137/15M1009172

Unconditional convergence and optimal error estimates of the Euler semi-implicit scheme for a generalized nonlinear Schrödinger equation

Wentao Cai, Jian Li and Zhangxin Chen
Advances in Computational Mathematics 42 (6) 1311 (2016)
https://doi.org/10.1007/s10444-016-9463-2

Integrable discretization of nonlinear Schrödinger equation and its application with Fourier pseudo-spectral method

Y. Zhang, X. B. Hu and H. W. Tam
Numerical Algorithms 69 (4) 839 (2015)
https://doi.org/10.1007/s11075-014-9928-7

ANALYSIS OF A RELAXATION SCHEME FOR A NONLINEAR SCHRÖDINGER EQUATION OCCURRING IN PLASMA PHYSICS

Dietmar Oelz and Saber Trabelsi
Mathematical Modelling and Analysis 19 (2) 257 (2014)
https://doi.org/10.3846/13926292.2014.910279

A New Error Analysis of Crank–Nicolson Galerkin FEMs for a Generalized Nonlinear Schrödinger Equation

Jilu Wang
Journal of Scientific Computing 60 (2) 390 (2014)
https://doi.org/10.1007/s10915-013-9799-4

Numerical methods and comparison for computing dark and bright solitons in the nonlinear Schrödinger equation

Weizhu Bao, Qinglin Tang and Zhiguo Xu
Journal of Computational Physics 235 423 (2013)
https://doi.org/10.1016/j.jcp.2012.10.054

Theory and numerical approximations for a nonlinear 1 + 1 Dirac system

Nikolaos Bournaveas and Georgios E. Zouraris
ESAIM: Mathematical Modelling and Numerical Analysis 46 (4) 841 (2012)
https://doi.org/10.1051/m2an/2011071