The Citing articles tool gives a list of articles citing the current article. The citing articles come from EDP Sciences database, as well as other publishers participating in CrossRef Cited-by Linking Program . You can set up your personal account to receive an email alert each time this article is cited by a new article (see the menu on the right-hand side of the abstract page).
Cited article:
Georgios E. Zouraris
ESAIM: M2AN, 35 3 (2001) 389-405
Published online: 2002-04-15
This article has been cited by the following article(s):
43 articles
Optimal L2 error estimates of mass- and energy- conserved FE schemes for a nonlinear Schrödinger–type system
Zhuoyue Zhang and Wentao Cai Journal of Computational and Applied Mathematics 457 116313 (2025) https://doi.org/10.1016/j.cam.2024.116313
Efficient numerical approximations for a nonconservative nonlinear Schrödinger equation appearing in wind‐forced ocean waves
Agissilaos Athanassoulis, Theodoros Katsaounis and Irene Kyza Studies in Applied Mathematics 153 (4) (2024) https://doi.org/10.1111/sapm.12774
A novel multilevel finite element method for a generalized nonlinear Schrödinger equation
Fei Xu, Yasai Guo and Manting Xie Journal of Computational and Applied Mathematics 116280 (2024) https://doi.org/10.1016/j.cam.2024.116280
Uniform L∞-bounds for energy-conserving higher-order time integrators for the Gross–Pitaevskii equation with rotation
Christian Döding and Patrick Henning IMA Journal of Numerical Analysis 44 (5) 2892 (2024) https://doi.org/10.1093/imanum/drad081
High-Order Mass- and Energy-Conserving Methods for the Nonlinear Schrödinger Equation
Genming Bai, Jiashun Hu and Buyang Li SIAM Journal on Scientific Computing 46 (2) A1026 (2024) https://doi.org/10.1137/22M152178X
On the convergence of a linearly implicit finite element method for the nonlinear Schrödinger equation
Mohammad Asadzadeh and Georgios E. Zouraris Studies in Applied Mathematics (2024) https://doi.org/10.1111/sapm.12743
A two level approach for simulating Bose–Einstein condensates by Localized Orthogonal Decomposition
Christian Döding, Patrick Henning, Johan Wärnegård, M. Picasso, A. Buffa, F. Nobile, S. Deparis, D. Kressner and J. Hesthaven ESAIM: Mathematical Modelling and Numerical Analysis 58 (6) 2317 (2024) https://doi.org/10.1051/m2an/2024040
Unconditional optimal error estimates of a linearized mass- and energy- conservation FEM for a coupled nonlinear Schrödinger equations
Qinlong Li and Yu Li Communications in Nonlinear Science and Numerical Simulation 124 107297 (2023) https://doi.org/10.1016/j.cnsns.2023.107297
A novel, structure-preserving, second-order-in-time relaxation scheme for Schrödinger-Poisson systems
Agissilaos Athanassoulis, Theodoros Katsaounis, Irene Kyza and Stephen Metcalfe Journal of Computational Physics 490 112307 (2023) https://doi.org/10.1016/j.jcp.2023.112307
Error Estimation of the Relaxation Finite Difference Scheme for the Nonlinear Schrödinger Equation
Georgios E. Zouraris SIAM Journal on Numerical Analysis 61 (1) 365 (2023) https://doi.org/10.1137/21M1399130
Implicit-Explicit Finite Difference Approximations of a Semilinear Heat Equation with Logarithmic Nonlinearity
Panagiotis Paraschis and Georgios E. Zouraris Computational Methods in Applied Mathematics 23 (3) 695 (2023) https://doi.org/10.1515/cmam-2022-0217
Unconditionally optimal error estimate of mass- and energy-stable Galerkin method for Schrödinger equation with cubic nonlinearity
Huaijun Yang Applied Numerical Mathematics 183 39 (2023) https://doi.org/10.1016/j.apnum.2022.08.016
Galerkin finite element method for damped nonlinear Schrödinger equation
Lingli Wang and Meng Li Applied Numerical Mathematics 178 216 (2022) https://doi.org/10.1016/j.apnum.2022.03.018
A linearized compact ADI numerical method for the two-dimensional nonlinear delayed Schrödinger equation
Hongyu Qin, Fengyan Wu and Deng Ding Applied Mathematics and Computation 412 126580 (2022) https://doi.org/10.1016/j.amc.2021.126580
Error estimates of second-order BDF Galerkin finite element methods for a coupled nonlinear Schrödinger system
Yanhua Mei and Rong An Computers & Mathematics with Applications 122 117 (2022) https://doi.org/10.1016/j.camwa.2022.07.018
Iterative reconstruction algorithms for solving the Schrödinger equations on conical spaces
Joshua Warigue Ndiaye Analysis and Mathematical Physics 12 (1) (2022) https://doi.org/10.1007/s13324-021-00645-7
Unconditional optimal error estimates of linearized backward Euler Galerkin FEMs for nonlinear Schrödinger-Helmholtz equations
Yun-Bo Yang and Yao-Lin Jiang Numerical Algorithms 86 (4) 1495 (2021) https://doi.org/10.1007/s11075-020-00942-5
Error estimation of the Besse Relaxation Scheme for a semilinear heat equation
Georgios E. Zouraris ESAIM: Mathematical Modelling and Numerical Analysis 55 (1) 301 (2021) https://doi.org/10.1051/m2an/2020077
Second-Order SAV Schemes for the Nonlinear Schrödinger Equation and Their Error Analysis
Beichuan Deng, Jie Shen and Qingqu Zhuang Journal of Scientific Computing 88 (3) (2021) https://doi.org/10.1007/s10915-021-01576-y
A note on optimal $$H^1$$-error estimates for Crank-Nicolson approximations to the nonlinear Schrödinger equation
Patrick Henning and Johan Wärnegård BIT Numerical Mathematics 61 (1) 37 (2021) https://doi.org/10.1007/s10543-020-00814-3
Structure-preserving Gauss methods for the nonlinear Schrödinger equation
Georgios Akrivis and Dongfang Li Calcolo 58 (2) (2021) https://doi.org/10.1007/s10092-021-00405-w
Superconvergence of time invariants for the Gross–Pitaevskii equation
Patrick Henning and Johan Wärnegård Mathematics of Computation 91 (334) 509 (2021) https://doi.org/10.1090/mcom/3693
Nonconforming finite element method for a generalized nonlinear Schrödinger equation
Houchao Zhang, Dongyang Shi and Qingfu Li Applied Mathematics and Computation 377 125141 (2020) https://doi.org/10.1016/j.amc.2020.125141
A Schrödinger-type algorithm for solving the Schrödinger equations via Phragmén–Lindelöf inequalities
Lingling Zhao Journal of Inequalities and Applications 2019 (1) (2019) https://doi.org/10.1186/s13660-019-2098-3
Unconditionally optimal error estimates of a new mixed FEM for nonlinear Schrödinger equations
Dongyang Shi and Huaijun Yang Advances in Computational Mathematics 45 (5-6) 3173 (2019) https://doi.org/10.1007/s10444-019-09732-7
Approximating the Nonlinear Schrödinger Equation by a Two Level Linearly Implicit Finite Element Method
M. Asadzadeh and C. Standar Journal of Mathematical Sciences 239 (3) 233 (2019) https://doi.org/10.1007/s10958-019-04301-1
Relay-Zone Technique for Numerical Boundary Treatments in Simulating Dark Solitons
Lei Bian and Shaoqiang Tang Multiscale Science and Engineering 1 (3) 210 (2019) https://doi.org/10.1007/s42493-018-00002-0
Superconvergence analysis of Crank‐Nicolson Galerkin FEMs for a generalized nonlinear Schrödinger equation
Houchao Zhang and Junjun Wang Numerical Methods for Partial Differential Equations 34 (2) 799 (2018) https://doi.org/10.1002/num.22230
Low order nonconforming finite element method for time-dependent nonlinear Schrödinger equation
Chao Xu, Jiaquan Zhou, Dongyang Shi and Houchao Zhang Boundary Value Problems 2018 (1) (2018) https://doi.org/10.1186/s13661-018-1093-9
Unconditional stability and convergence of Crank–Nicolson Galerkin FEMs for a nonlinear Schrödinger–Helmholtz system
Jilu Wang Numerische Mathematik 139 (2) 479 (2018) https://doi.org/10.1007/s00211-017-0944-0
Unconditional optimal error estimates for BDF2-FEM for a nonlinear Schrödinger equation
Wentao Cai, Jian Li and Zhangxin Chen Journal of Computational and Applied Mathematics 331 23 (2018) https://doi.org/10.1016/j.cam.2017.09.010
A Linear Implicit Finite Difference Discretization of the Schrödinger–Hirota Equation
Georgios E. Zouraris Journal of Scientific Computing 77 (1) 634 (2018) https://doi.org/10.1007/s10915-018-0718-6
A Posteriori Error Analysis for Evolution Nonlinear Schrödinger Equations up to the Critical Exponent
Theodoros Katsaounis and Irene Kyza SIAM Journal on Numerical Analysis 56 (3) 1405 (2018) https://doi.org/10.1137/16M1108029
Crank–Nicolson Galerkin approximations to nonlinear Schrödinger equations with rough potentials
Patrick Henning and Daniel Peterseim Mathematical Models and Methods in Applied Sciences 27 (11) 2147 (2017) https://doi.org/10.1142/S0218202517500415
Optimal error analysis of Crank–Nicolson schemes for a coupled nonlinear Schrödinger system in 3D
Weiwei Sun and Jilu Wang Journal of Computational and Applied Mathematics 317 685 (2017) https://doi.org/10.1016/j.cam.2016.12.004
The Finite Element Method for the Time-Dependent Gross--Pitaevskii Equation with Angular Momentum Rotation
Patrick Henning and Axel Målqvist SIAM Journal on Numerical Analysis 55 (2) 923 (2017) https://doi.org/10.1137/15M1009172
Unconditional convergence and optimal error estimates of the Euler semi-implicit scheme for a generalized nonlinear Schrödinger equation
Wentao Cai, Jian Li and Zhangxin Chen Advances in Computational Mathematics 42 (6) 1311 (2016) https://doi.org/10.1007/s10444-016-9463-2
Integrable discretization of nonlinear Schrödinger equation and its application with Fourier pseudo-spectral method
Y. Zhang, X. B. Hu and H. W. Tam Numerical Algorithms 69 (4) 839 (2015) https://doi.org/10.1007/s11075-014-9928-7
ANALYSIS OF A RELAXATION SCHEME FOR A NONLINEAR SCHRÖDINGER EQUATION OCCURRING IN PLASMA PHYSICS
Dietmar Oelz and Saber Trabelsi Mathematical Modelling and Analysis 19 (2) 257 (2014) https://doi.org/10.3846/13926292.2014.910279
A New Error Analysis of Crank–Nicolson Galerkin FEMs for a Generalized Nonlinear Schrödinger Equation
Jilu Wang Journal of Scientific Computing 60 (2) 390 (2014) https://doi.org/10.1007/s10915-013-9799-4
Numerical methods and comparison for computing dark and bright solitons in the nonlinear Schrödinger equation
Weizhu Bao, Qinglin Tang and Zhiguo Xu Journal of Computational Physics 235 423 (2013) https://doi.org/10.1016/j.jcp.2012.10.054
Theory and numerical approximations for a nonlinear 1 + 1 Dirac system
Nikolaos Bournaveas and Georgios E. Zouraris ESAIM: Mathematical Modelling and Numerical Analysis 46 (4) 841 (2012) https://doi.org/10.1051/m2an/2011071
Trends in Industrial and Applied Mathematics
Graeme Fairweather and Morrakot Khebchareon Applied Optimization, Trends in Industrial and Applied Mathematics 72 219 (2002) https://doi.org/10.1007/978-1-4613-0263-6_10