Articles citing this article

The Citing articles tool gives a list of articles citing the current article.
The citing articles come from EDP Sciences database, as well as other publishers participating in CrossRef Cited-by Linking Program. You can set up your personal account to receive an email alert each time this article is cited by a new article (see the menu on the right-hand side of the abstract page).

Cited article:

A Local Continuum Model of Cell-Cell Adhesion

C. Falcó, R. E. Baker and J. A. Carrillo
SIAM Journal on Applied Mathematics 84 (3) S17 (2024)
https://doi.org/10.1137/22M1506079

A second-order structure-preserving discretization for the Cahn-Hilliard/Allen-Cahn system with cross-kinetic coupling

Aaron Brunk, Herbert Egger and Oliver Habrich
Applied Numerical Mathematics 206 12 (2024)
https://doi.org/10.1016/j.apnum.2024.07.016

A structure-preserving finite element method for the multi-phase Mullins–Sekerka problem with triple junctions

Tokuhiro Eto, Harald Garcke and Robert Nürnberg
Numerische Mathematik 156 (4) 1479 (2024)
https://doi.org/10.1007/s00211-024-01414-x

Stability and discretization error analysis for the Cahn–Hilliard system via relative energy estimates

Aaron Brunk, Herbert Egger, Oliver Habrich and Mária Lukáčová-Medviďová
ESAIM: Mathematical Modelling and Numerical Analysis 57 (3) 1297 (2023)
https://doi.org/10.1051/m2an/2023017

A convergent SAV scheme for Cahn–Hilliard equations with dynamic boundary conditions

Stefan Metzger
IMA Journal of Numerical Analysis 43 (6) 3593 (2023)
https://doi.org/10.1093/imanum/drac078

Efficient and energy stable scheme for the hydrodynamically coupled three components Cahn-Hilliard phase-field model using the stabilized-Invariant Energy Quadratization (S-IEQ) Approach

Xiaofeng Yang
Journal of Computational Physics 438 110342 (2021)
https://doi.org/10.1016/j.jcp.2021.110342

In Silico Mathematical Modelling for Glioblastoma: A Critical Review and a Patient-Specific Case

Jacopo Falco, Abramo Agosti, Ignazio G. Vetrano, Alberto Bizzi, Francesco Restelli, Morgan Broggi, Marco Schiariti, Francesco DiMeco, Paolo Ferroli, Pasquale Ciarletta and Francesco Acerbi
Journal of Clinical Medicine 10 (10) 2169 (2021)
https://doi.org/10.3390/jcm10102169

A stable FE method for the space-time solution of the Cahn-Hilliard equation

Eirik Valseth, Albert Romkes and Austin R. Kaul
Journal of Computational Physics 441 110426 (2021)
https://doi.org/10.1016/j.jcp.2021.110426

An Efficient and Convergent Finite Element Scheme for Cahn--Hilliard Equations with Dynamic Boundary Conditions

Stefan Metzger
SIAM Journal on Numerical Analysis 59 (1) 219 (2021)
https://doi.org/10.1137/19M1280740

Energy stable numerical schemes for the fractional-in-space Cahn–Hilliard equation

Linlin Bu, Liquan Mei, Ying Wang and Yan Hou
Applied Numerical Mathematics 158 392 (2020)
https://doi.org/10.1016/j.apnum.2020.08.007

Arbitrarily high-order linear energy stable schemes for gradient flow models

Yuezheng Gong, Jia Zhao and Qi Wang
Journal of Computational Physics 419 109610 (2020)
https://doi.org/10.1016/j.jcp.2020.109610

Energy Stable Numerical Schemes for Ternary Cahn-Hilliard System

Wenbin Chen, Cheng Wang, Shufen Wang, Xiaoming Wang and Steven M. Wise
Journal of Scientific Computing 84 (2) (2020)
https://doi.org/10.1007/s10915-020-01276-z

A fully coupled mixed finite element method for surfactants spreading on thin liquid films

Yingjie Liu, Christian Peco and John Dolbow
Computer Methods in Applied Mechanics and Engineering 345 429 (2019)
https://doi.org/10.1016/j.cma.2018.10.045

A Two-Phase Two-Fluxes Degenerate Cahn–Hilliard Model as Constrained Wasserstein Gradient Flow

Clément Cancès, Daniel Matthes and Flore Nabet
Archive for Rational Mechanics and Analysis 233 (2) 837 (2019)
https://doi.org/10.1007/s00205-019-01369-6

CAHN-HILLIARD VS SINGULAR CAHN-HILLIARD EQUATIONS IN SIMULATIONS OF IMMISCIBLE BINARY FLUIDS

Lizhen Chen
Journal of Applied Analysis & Computation 8 (4) 1050 (2018)
https://doi.org/10.11948/2018.1050

A multiphase Cahn–Hilliard–Darcy model for tumour growth with necrosis

Harald Garcke, Kei Fong Lam, Robert Nürnberg and Emanuel Sitka
Mathematical Models and Methods in Applied Sciences 28 (03) 525 (2018)
https://doi.org/10.1142/S0218202518500148

Finite Volumes for Complex Applications VIII - Methods and Theoretical Aspects

Clément Cancès and Flore Nabet
Springer Proceedings in Mathematics & Statistics, Finite Volumes for Complex Applications VIII - Methods and Theoretical Aspects 199 431 (2017)
https://doi.org/10.1007/978-3-319-57397-7_36

On a cross-diffusion model for multiple species with nonlocal interaction and size exclusion

Judith Berendsen, Martin Burger and Jan-Frederik Pietschmann
Nonlinear Analysis 159 10 (2017)
https://doi.org/10.1016/j.na.2017.03.010

Numerical approximation of a non-smooth phase-field model for multicomponent incompressible flow

L’ubomír Baňas and Robert Nürnberg
ESAIM: Mathematical Modelling and Numerical Analysis 51 (3) 1089 (2017)
https://doi.org/10.1051/m2an/2016048

Numerical approximations for a three-component Cahn–Hilliard phase-field model based on the invariant energy quadratization method

Xiaofeng Yang, Jia Zhao, Qi Wang and Jie Shen
Mathematical Models and Methods in Applied Sciences 27 (11) 1993 (2017)
https://doi.org/10.1142/S0218202517500373

Modeling size controlled nanoparticle precipitation with the co-solvency method by spinodal decomposition

Simon Keßler, Friederike Schmid and Klaus Drese
Soft Matter 12 (34) 7231 (2016)
https://doi.org/10.1039/C6SM01198E

Unconditionally energy stable time stepping scheme for Cahn–Morral equation: Application to multi-component spinodal decomposition and optimal space tiling

Rouhollah Tavakoli
Journal of Computational Physics 304 441 (2016)
https://doi.org/10.1016/j.jcp.2015.10.018

Sharp-Interface Limits of the Cahn--Hilliard Equation with Degenerate Mobility

Alpha Albert Lee, Andreas Münch and Endre Süli
SIAM Journal on Applied Mathematics 76 (2) 433 (2016)
https://doi.org/10.1137/140960189

An efficient, unconditionally energy stable local discontinuous Galerkin scheme for the Cahn–Hilliard–Brinkman system

Ruihan Guo and Yan Xu
Journal of Computational Physics 298 387 (2015)
https://doi.org/10.1016/j.jcp.2015.06.007

Identification of Space-Time Distributed Parameters in the Gierer--Meinhardt Reaction-Diffusion System

Marcus R. Garvie and Catalin Trenchea
SIAM Journal on Applied Mathematics 74 (1) 147 (2014)
https://doi.org/10.1137/120885784

Analysis of a time discretization scheme for a nonstandard viscous Cahn–Hilliard system

Pierluigi Colli, Gianni Gilardi, Pavel Krejčí, Paolo Podio-Guidugli and Jürgen Sprekels
ESAIM: Mathematical Modelling and Numerical Analysis 48 (4) 1061 (2014)
https://doi.org/10.1051/m2an/2014005

An efficient fully-discrete local discontinuous Galerkin method for the Cahn–Hilliard–Hele–Shaw system

Ruihan Guo, Yinhua Xia and Yan Xu
Journal of Computational Physics 264 23 (2014)
https://doi.org/10.1016/j.jcp.2014.01.037

Efficient numerical solution of discrete multi-component Cahn–Hilliard systems

P. Boyanova and M. Neytcheva
Computers & Mathematics with Applications 67 (1) 106 (2014)
https://doi.org/10.1016/j.camwa.2013.10.013

Efficient Solvers of Discontinuous Galerkin Discretization for the Cahn–Hilliard Equations

Ruihan Guo and Yan Xu
Journal of Scientific Computing 58 (2) 380 (2014)
https://doi.org/10.1007/s10915-013-9738-4

A Quadratic $C^0$ Interior Penalty Method for Linear Fourth Order Boundary Value Problems with Boundary Conditions of the Cahn--Hilliard Type

Susanne C. Brenner, Shiyuan Gu, Thirupathi Gudi and Li-yeng Sung
SIAM Journal on Numerical Analysis 50 (4) 2088 (2012)
https://doi.org/10.1137/110847469

Numerical simulation and linear well-posedness analysis for a class of three-phase boundary motion problems

Zhenguo Pan and Brian Wetton
Journal of Computational and Applied Mathematics 236 (13) 3160 (2012)
https://doi.org/10.1016/j.cam.2012.02.013

Parareal in Time Simulation Of Morphological Transformation in Cubic Alloys with Spatially Dependent Composition

Li-Ping He and Minxin He
Communications in Computational Physics 11 (5) 1697 (2012)
https://doi.org/10.4208/cicp.110310.090911a

Finite element approximation of the Cahn–Hilliard equation on surfaces

Qiang Du, Lili Ju and Li Tian
Computer Methods in Applied Mechanics and Engineering 200 (29-32) 2458 (2011)
https://doi.org/10.1016/j.cma.2011.04.018

Numerical schemes for a three component Cahn-Hilliard model

Franck Boyer and Sebastian Minjeaud
ESAIM: Mathematical Modelling and Numerical Analysis 45 (4) 697 (2011)
https://doi.org/10.1051/m2an/2010072

A second-order accurate non-linear difference scheme for the N -component Cahn–Hilliard system

Hyun Geun Lee and Junseok Kim
Physica A: Statistical Mechanics and its Applications 387 (19-20) 4787 (2008)
https://doi.org/10.1016/j.physa.2008.03.023

Finite Element Approximation of a Three Dimensional Phase Field Model for Void Electromigration

Ľubomír Baňas and Robert Nürnberg
Journal of Scientific Computing 37 (2) 202 (2008)
https://doi.org/10.1007/s10915-008-9203-y

Finite element approximation of spatially extended predator–prey interactions with the Holling type II functional response

Marcus R. Garvie and Catalin Trenchea
Numerische Mathematik 107 (4) 641 (2007)
https://doi.org/10.1007/s00211-007-0106-x

Local discontinuous Galerkin methods for the Cahn–Hilliard type equations

Yinhua Xia, Yan Xu and Chi-Wang Shu
Journal of Computational Physics 227 (1) 472 (2007)
https://doi.org/10.1016/j.jcp.2007.08.001

Finite Element Approximation of Soluble Surfactant Spreading on a Thin Film

John W. Barrett, Robert Nu?rnberg and Mark R. E. Warner
SIAM Journal on Numerical Analysis 44 (3) 1218 (2006)
https://doi.org/10.1137/040618400

Finite element approximation of a phase field model for surface diffusion of voids in a stressed solid

John Barrett, Harald Garcke and Robert Nürnberg
Mathematics of Computation 75 (253) 7 (2005)
https://doi.org/10.1090/S0025-5718-05-01802-8

Linearized Stability Analysis of Stationary Solutions for Surface Diffusion with Boundary Conditions

Harald Garcke, Kazuo Ito and Yoshihito Kohsaka
SIAM Journal on Mathematical Analysis 36 (4) 1031 (2005)
https://doi.org/10.1137/S0036141003437939

A Diffuse Interface Model for Alloys with Multiple Components and Phases

Bjorn Stinner, Britta Nestler and Harald Garcke
SIAM Journal on Applied Mathematics 64 (3) 775 (2004)
https://doi.org/10.1137/S0036139902413143

Finite Element Approximation of Surfactant Spreading on a Thin Film

John W. Barrett, Harald Garcke and Robert Nu?rnberg
SIAM Journal on Numerical Analysis 41 (4) 1427 (2003)
https://doi.org/10.1137/S003614290139799X

Exponential stability for a mirror–symmetric three phase boundary motion by surface diffusion

Joachim Escher, Harald Garcke and Kazuo Ito
Mathematische Nachrichten 257 (1) 3 (2003)
https://doi.org/10.1002/mana.200310074