Articles citing this article

The Citing articles tool gives a list of articles citing the current article.
The citing articles come from EDP Sciences database, as well as other publishers participating in CrossRef Cited-by Linking Program. You can set up your personal account to receive an email alert each time this article is cited by a new article (see the menu on the right-hand side of the abstract page).

Cited article:

Recent progress on mathematical analysis and numerical simulations for Maxwell's equations in perfectly matched layers and complex media: a review

Jichun Li
Electronic Research Archive 32 (3) 1901 (2024)
https://doi.org/10.3934/era.2024087

Well-Posedness and Convergence Analysis of PML Method for Time-Dependent Acoustic Scattering Problems Over a Locally Rough Surface

Hongxia Guo and Guanghui Hu
Computational Methods in Applied Mathematics 24 (1) 21 (2024)
https://doi.org/10.1515/cmam-2023-0017

The Half-Space Matching method for elastodynamic scattering problems in unbounded domains

Éliane Bécache, Anne-Sophie Bonnet-Ben Dhia, Sonia Fliss and Antoine Tonnoir
Journal of Computational Physics 490 112320 (2023)
https://doi.org/10.1016/j.jcp.2023.112320

Convergence analysis of time-domain PMLS for 2D electromagnetic wave propagation in dispersive waveguides

Éliane Bécache, Maryna Kachanovska and Markus Wess
ESAIM: Mathematical Modelling and Numerical Analysis 57 (4) 2451 (2023)
https://doi.org/10.1051/m2an/2023060

Developing and analyzing an explicit unconditionally stable finite element scheme for an equivalent Bérenger’s PML model

Yunqing Huang, Jichun Li and Xin Liu
ESAIM: Mathematical Modelling and Numerical Analysis 57 (2) 621 (2023)
https://doi.org/10.1051/m2an/2022086

Implementation of the novel perfectly matched layer element for elastodynamic problems in time-domain finite element method

Junwei Chen, Yundong Shou and Xiaoping Zhou
Soil Dynamics and Earthquake Engineering 152 107054 (2022)
https://doi.org/10.1016/j.soildyn.2021.107054

Review and Recent Developments on the Perfectly Matched Layer (PML) Method for the Numerical Modeling and Simulation of Elastic Wave Propagation in Unbounded Domains

Florent Pled and Christophe Desceliers
Archives of Computational Methods in Engineering 29 (1) 471 (2022)
https://doi.org/10.1007/s11831-021-09581-y

Stability and Convergence Analysis of Time-Domain Perfectly Matched Layers for the Wave Equation in Waveguides

Eliane Bécache and Maryna Kachanovska
SIAM Journal on Numerical Analysis 59 (4) 2004 (2021)
https://doi.org/10.1137/20M1330543

Development and analysis of both finite element and fourth-order in space finite difference methods for an equivalent Berenger's PML model

Yunqing Huang, Min Chen and Jichun Li
Journal of Computational Physics 405 109154 (2020)
https://doi.org/10.1016/j.jcp.2019.109154

Energy Decay and Stability of a Perfectly Matched Layer For the Wave Equation

Daniel H. Baffet, Marcus J. Grote, Sébastien Imperiale and Maryna Kachanovska
Journal of Scientific Computing 81 (3) 2237 (2019)
https://doi.org/10.1007/s10915-019-01089-9

Nobody's Perfect; Matched Layers for Heterogeneous Media

Laurence Halpern, Ludovic Métivier, Jeffrey Rauch and Juliette Ryan
SIAM Journal on Scientific Computing 41 (1) A1 (2019)
https://doi.org/10.1137/17M1114752

Complex frequency‐shifted multi‐axial perfectly matched layer for frequency‐domain seismic wavefield simulation in anisotropic media

Zhencong Zhao and Jingyi Chen
Geophysical Prospecting 67 (5) 1329 (2019)
https://doi.org/10.1111/1365-2478.12780

Discontinuous Galerkin discretizations of the Boltzmann–BGK equations for nearly incompressible flows: Semi-analytic time stepping and absorbing boundary layers

A. Karakus, N. Chalmers, J.S. Hesthaven and T. Warburton
Journal of Computational Physics 390 175 (2019)
https://doi.org/10.1016/j.jcp.2019.03.050

Analysis and application of an equivalent Berenger’s PML model

Yunqing Huang, Hongen Jia and Jichun Li
Journal of Computational and Applied Mathematics 333 157 (2018)
https://doi.org/10.1016/j.cam.2017.10.036

Time-domain PML formulation for modeling viscoelastic waves with Rayleigh-type damping in an unbounded domain: Theory and application in ABAQUS

Masoud Khazaei Poul and Aspasia Zerva
Finite Elements in Analysis and Design 152 1 (2018)
https://doi.org/10.1016/j.finel.2018.08.004

Mathematical Foundations of Computational Electromagnetism

Franck Assous, Patrick Ciarlet and Simon Labrunie
Applied Mathematical Sciences, Mathematical Foundations of Computational Electromagnetism 198 1 (2018)
https://doi.org/10.1007/978-3-319-70842-3_1

Mathematical Foundations of Computational Electromagnetism

Franck Assous, Patrick Ciarlet and Simon Labrunie
Applied Mathematical Sciences, Mathematical Foundations of Computational Electromagnetism 198 191 (2018)
https://doi.org/10.1007/978-3-319-70842-3_5

Perfectly matched layers for convex truncated domains with discontinuous Galerkin time domain simulations

Axel Modave, Jonathan Lambrechts and Christophe Geuzaine
Computers & Mathematics with Applications 73 (4) 684 (2017)
https://doi.org/10.1016/j.camwa.2016.12.027

Stable perfectly matched layers for a cold plasma in a strong background magnetic field

Eliane Bécache, Patrick Joly and Maryna Kachanovska
Journal of Computational Physics 341 76 (2017)
https://doi.org/10.1016/j.jcp.2017.03.051

Stable perfectly matched layers for a class of anisotropic dispersive models. Part I: necessary and sufficient conditions of stability

Eliane Bécache and Maryna Kachanovska
ESAIM: Mathematical Modelling and Numerical Analysis 51 (6) 2399 (2017)
https://doi.org/10.1051/m2an/2017019

Select Advances in Computational Accelerator Physics

John R. Cary, Dan T. Abell, George I. Bell, et al.
IEEE Transactions on Nuclear Science 63 (2) 823 (2016)
https://doi.org/10.1109/TNS.2015.2500686

The Role of Numerical Boundary Procedures in the Stability of Perfectly Matched Layers

Kenneth Duru
SIAM Journal on Scientific Computing 38 (2) A1171 (2016)
https://doi.org/10.1137/140976443

Near-Optimal Perfectly Matched Layers for Indefinite Helmholtz Problems

Vladimir Druskin, Stefan Güttel and Leonid Knizhnerman
SIAM Review 58 (1) 90 (2016)
https://doi.org/10.1137/140966927

An effective preconditioner for a PML system for electromagnetic scattering problem

Qiya Hu, Chunmei Liu, Shi Shu and Jun Zou
ESAIM: Mathematical Modelling and Numerical Analysis 49 (3) 839 (2015)
https://doi.org/10.1051/m2an/2014058

Bérenger/Maxwell with Discontinous Absorptions : Existence, Perfection, and No Loss

Laurence Halpern and Jeffrey Rauch
Séminaire Laurent Schwartz — EDP et applications 1 (2014)
https://doi.org/10.5802/slsedp.38

Boundary Waves and Stability of the Perfectly Matched Layer for the Two Space Dimensional Elastic Wave Equation in Second Order Form

Kenneth Duru and Gunilla Kreiss
SIAM Journal on Numerical Analysis 52 (6) 2883 (2014)
https://doi.org/10.1137/13093563X

A staggered-grid finite-difference scheme optimized in the time–space domain for modeling scalar-wave propagation in geophysical problems

Sirui Tan and Lianjie Huang
Journal of Computational Physics 276 613 (2014)
https://doi.org/10.1016/j.jcp.2014.07.044

Mathematical analysis of a PML model obtained with stretched coordinates and its application to backward wave propagation in metamaterials

Yunqing Huang, Jichun Li and Wei Yang
Numerical Methods for Partial Differential Equations 30 (5) 1558 (2014)
https://doi.org/10.1002/num.21824

Energy-dissipation splitting finite-difference time-domain method for Maxwell equations with perfectly matched layers

Jialin Hong, Lihai Ji and Linghua Kong
Journal of Computational Physics 269 201 (2014)
https://doi.org/10.1016/j.jcp.2014.03.025

Time-Domain Finite Element Methods for Maxwell's Equations in Metamaterials

Jichun Li and Yunqing Huang
Springer Series in Computational Mathematics, Time-Domain Finite Element Methods for Maxwell's Equations in Metamaterials 43 151 (2013)
https://doi.org/10.1007/978-3-642-33789-5_5

Modeling Backward Wave Propagation in Metamaterials by the Finite Element Time-Domain Method

Yunqing Huang, Jichun Li and Wei Yang
SIAM Journal on Scientific Computing 35 (1) B248 (2013)
https://doi.org/10.1137/120869869

A modified and stable version of a perfectly matched layer technique for the 3-d second order wave equation in time domain with an application to aeroacoustics

Barbara Kaltenbacher, Manfred Kaltenbacher and Imbo Sim
Journal of Computational Physics 235 407 (2013)
https://doi.org/10.1016/j.jcp.2012.10.016

Time-Domain Finite Element Methods for Maxwell's Equations in Metamaterials

Jichun Li and Yunqing Huang
Springer Series in Computational Mathematics, Time-Domain Finite Element Methods for Maxwell's Equations in Metamaterials 43 127 (2013)
https://doi.org/10.1007/978-3-642-33789-5_4

Time-Domain Finite Element Methods for Maxwell's Equations in Metamaterials

Jichun Li and Yunqing Huang
Springer Series in Computational Mathematics, Time-Domain Finite Element Methods for Maxwell's Equations in Metamaterials 43 215 (2013)
https://doi.org/10.1007/978-3-642-33789-5_8

A Krylov Stability-Corrected Coordinate-Stretching Method to Simulate Wave Propagation in Unbounded Domains

Vladimir Druskin and Rob Remis
SIAM Journal on Scientific Computing 35 (2) B376 (2013)
https://doi.org/10.1137/12087356X

Time-Domain Finite Element Methods for Maxwell's Equations in Metamaterials

Jichun Li and Yunqing Huang
Springer Series in Computational Mathematics, Time-Domain Finite Element Methods for Maxwell's Equations in Metamaterials 43 241 (2013)
https://doi.org/10.1007/978-3-642-33789-5_9

Time-Domain Finite Element Methods for Maxwell's Equations in Metamaterials

Jichun Li and Yunqing Huang
Springer Series in Computational Mathematics, Time-Domain Finite Element Methods for Maxwell's Equations in Metamaterials 43 195 (2013)
https://doi.org/10.1007/978-3-642-33789-5_7

Time-Domain Finite Element Methods for Maxwell's Equations in Metamaterials

Jichun Li and Yunqing Huang
Springer Series in Computational Mathematics, Time-Domain Finite Element Methods for Maxwell's Equations in Metamaterials 43 1 (2013)
https://doi.org/10.1007/978-3-642-33789-5_1

Time-Domain Finite Element Methods for Maxwell's Equations in Metamaterials

Jichun Li and Yunqing Huang
Springer Series in Computational Mathematics, Time-Domain Finite Element Methods for Maxwell's Equations in Metamaterials 43 53 (2013)
https://doi.org/10.1007/978-3-642-33789-5_3

Time-Domain Finite Element Methods for Maxwell's Equations in Metamaterials

Jichun Li and Yunqing Huang
Springer Series in Computational Mathematics, Time-Domain Finite Element Methods for Maxwell's Equations in Metamaterials 43 173 (2013)
https://doi.org/10.1007/978-3-642-33789-5_6

Time-Domain Finite Element Methods for Maxwell's Equations in Metamaterials

Jichun Li and Yunqing Huang
Springer Series in Computational Mathematics, Time-Domain Finite Element Methods for Maxwell's Equations in Metamaterials 43 19 (2013)
https://doi.org/10.1007/978-3-642-33789-5_2

On the Accuracy and Stability of the Perfectly Matched Layer in Transient Waveguides

Kenneth Duru and Gunilla Kreiss
Journal of Scientific Computing 53 (3) 642 (2012)
https://doi.org/10.1007/s10915-012-9594-7

An Iterative Two-Grid Method of A Finite Element PML Approximation for the Two Dimensional Maxwell Problem

Chunmei Liu, Shi Shu, Yunqing Huang, Liuqiang Zhong and Junxian Wang
Advances in Applied Mathematics and Mechanics 4 (2) 175 (2012)
https://doi.org/10.4208/aamm.10-m11166

An elementary introduction to the construction and the analysis of perfectly matched layers for time domain wave propagation

Patrick Joly
SeMA Journal 57 (1) 5 (2012)
https://doi.org/10.1007/BF03322599

A non-deteriorating algorithm for computational electromagnetism based on quasi-lacunae of Maxwell’s equations

S.V. Petropavlovsky and S.V. Tsynkov
Journal of Computational Physics 231 (2) 558 (2012)
https://doi.org/10.1016/j.jcp.2011.09.019

Long-Time Stability and Convergence of the Uniaxial Perfectly Matched Layer Method for Time-Domain Acoustic Scattering Problems

Zhiming Chen and Xinming Wu
SIAM Journal on Numerical Analysis 50 (5) 2632 (2012)
https://doi.org/10.1137/110835268

Numerical analysis of a PML model for time-dependent Maxwell’s equations

Yunqing Huang and Jichun Li
Journal of Computational and Applied Mathematics 235 (13) 3932 (2011)
https://doi.org/10.1016/j.cam.2011.01.039

Perfectly matched layers for the heat and advection–diffusion equations

Nicolas Lantos and Frédéric Nataf
Journal of Computational Physics 229 (24) 9042 (2010)
https://doi.org/10.1016/j.jcp.2010.08.004

Perfectly Matched Layers for Time-Harmonic Second Order Elliptic Problems

A. Bermúdez, L. Hervella-Nieto, A. Prieto and R. Rodríguez
Archives of Computational Methods in Engineering 17 (1) 77 (2010)
https://doi.org/10.1007/s11831-010-9041-6

Discontinuous Galerkin time‐domain solution of Maxwell's equations on locally refined grids with fictitious domains

A. Bouquet, C. Dedeban and S. Piperno
COMPEL - The international journal for computation and mathematics in electrical and electronic engineering 29 (3) 578 (2010)
https://doi.org/10.1108/03321641011028206

An unsplit convolutional perfectly matched layer technique improved at grazing incidence for the viscoelastic wave equation

Roland Martin and Dimitri Komatitsch
Geophysical Journal International 179 (1) 333 (2009)
https://doi.org/10.1111/j.1365-246X.2009.04278.x

Computational Acoustics of Noise Propagation in Fluids - Finite and Boundary Element Methods

Alfredo Bermúdez, Luis Hervella–Nieto, Andrés Prieto and Rodolfo Rodríguez
Computational Acoustics of Noise Propagation in Fluids - Finite and Boundary Element Methods 167 (2008)
https://doi.org/10.1007/978-3-540-77448-8_7

An Exact Bounded Perfectly Matched Layer for Time-Harmonic Scattering Problems

A. Bermúdez, L. Hervella-Nieto, A. Prieto and R. Rodríguez
SIAM Journal on Scientific Computing 30 (1) 312 (2008)
https://doi.org/10.1137/060670912

An unsplit convolutional perfectly matched layer improved at grazing incidence for seismic wave propagation in poroelastic media

Roland Martin, Dimitri Komatitsch and Abdelâziz Ezziani
GEOPHYSICS 73 (4) T51 (2008)
https://doi.org/10.1190/1.2939484

An optimal perfectly matched layer with unbounded absorbing function for time-harmonic acoustic scattering problems

A. Bermúdez, L. Hervella-Nieto, A. Prieto and R. Rodrı´guez
Journal of Computational Physics 223 (2) 469 (2007)
https://doi.org/10.1016/j.jcp.2006.09.018

An unsplit convolutional perfectly matched layer improved at grazing incidence for the seismic wave equation

Dimitri Komatitsch and Roland Martin
GEOPHYSICS 72 (5) SM155 (2007)
https://doi.org/10.1190/1.2757586

Well-posedness and exponential stability of Maxwell-like systems coupled with strongly absorbing layers

Hélène Barucq and Mathieu Fontes
Journal de Mathématiques Pures et Appliquées 87 (3) 253 (2007)
https://doi.org/10.1016/j.matpur.2007.01.001

Perfectly Matched Layers for Hyperbolic Systems: General Formulation, Well‐posedness, and Stability

Daniel Appelö, Thomas Hagstrom and Gunilla Kreiss
SIAM Journal on Applied Mathematics 67 (1) 1 (2006)
https://doi.org/10.1137/050639107

Discontinuous Galerkin time‐domain solution of Maxwell's equations on locally‐refined nonconforming Cartesian grids

N. Canouet, L. Fezoui and S. Piperno
COMPEL - The international journal for computation and mathematics in electrical and electronic engineering 24 (4) 1381 (2005)
https://doi.org/10.1108/03321640510615670

On the Long-Time Behavior of Unsplit Perfectly Matched Layers

E. Becache, P.G. Petropoulos and S.D. Gedney
IEEE Transactions on Antennas and Propagation 52 (5) 1335 (2004)
https://doi.org/10.1109/TAP.2004.827253

Mathematical and Numerical Aspects of Wave Propagation WAVES 2003

Eliane Bécache, Peter G. Petropoulos and Stephen D. Gedney
Mathematical and Numerical Aspects of Wave Propagation WAVES 2003 120 (2003)
https://doi.org/10.1007/978-3-642-55856-6_19

A new family of first-order boundary conditions for the Maxwell system: derivation, well-posedness and long-time behavior

Hélène Barucq
Journal de Mathématiques Pures et Appliquées 82 (1) 67 (2003)
https://doi.org/10.1016/S0021-7824(02)00002-8