Articles citing this article

The Citing articles tool gives a list of articles citing the current article.
The citing articles come from EDP Sciences database, as well as other publishers participating in CrossRef Cited-by Linking Program. You can set up your personal account to receive an email alert each time this article is cited by a new article (see the menu on the right-hand side of the abstract page).

Cited article:

This article has been cited by the following article(s):

An elementary introduction to the construction and the analysis of perfectly matched layers for time domain wave propagation

Patrick Joly
SeMA Journal 57 (1) 5 (2012)
DOI: 10.1007/BF03322599
See this article

Discontinuous Galerkin time‐domain solution of Maxwell's equations on locally‐refined nonconforming Cartesian grids

N. Canouet, L. Fezoui and S. Piperno
COMPEL - The international journal for computation and mathematics in electrical and electronic engineering 24 (4) 1381 (2005)
DOI: 10.1108/03321640510615670
See this article

On the Accuracy and Stability of the Perfectly Matched Layer in Transient Waveguides

Kenneth Duru and Gunilla Kreiss
Journal of Scientific Computing 53 (3) 642 (2012)
DOI: 10.1007/s10915-012-9594-7
See this article

Stable perfectly matched layers for a class of anisotropic dispersive models. Part I: necessary and sufficient conditions of stability

Eliane Bécache and Maryna Kachanovska
ESAIM: Mathematical Modelling and Numerical Analysis 51 (6) 2399 (2017)
DOI: 10.1051/m2an/2017019
See this article

Remarks on the stability of Cartesian PMLs in corners

Eliane Bécache and Andrés Prieto
Applied Numerical Mathematics 62 (11) 1639 (2012)
DOI: 10.1016/j.apnum.2012.05.003
See this article

A non-deteriorating algorithm for computational electromagnetism based on quasi-lacunae of Maxwell’s equations

S.V. Petropavlovsky and S.V. Tsynkov
Journal of Computational Physics 231 (2) 558 (2012)
DOI: 10.1016/j.jcp.2011.09.019
See this article

Lacunae based stabilization of PMLs

H. Qasimov and S. Tsynkov
Journal of Computational Physics 227 (15) 7322 (2008)
DOI: 10.1016/j.jcp.2008.04.018
See this article

Efficient and stable perfectly matched layer for CEM

Kenneth Duru and Gunilla Kreiss
Applied Numerical Mathematics 76 34 (2014)
DOI: 10.1016/j.apnum.2013.09.005
See this article

Modeling Backward Wave Propagation in Metamaterials by the Finite Element Time-Domain Method

Yunqing Huang, Jichun Li and Wei Yang
SIAM Journal on Scientific Computing 35 (1) B248 (2013)
DOI: 10.1137/120869869
See this article

Exact non-reflecting boundary conditions on general domains

David P. Nicholls and Nilima Nigam
Journal of Computational Physics 194 (1) 278 (2004)
DOI: 10.1016/j.jcp.2003.09.006
See this article

Analysis of FDTD to UPML for Maxwell equations in polar coordinates

Fang Nengsheng and Ying Longan
Acta Mathematica Scientia 31 (5) 2007 (2011)
DOI: 10.1016/S0252-9602(11)60378-0
See this article

Application of a perfectly matched layer to the nonlinear wave equation

Daniel Appelö and Gunilla Kreiss
Wave Motion 44 (7-8) 531 (2007)
DOI: 10.1016/j.wavemoti.2007.01.004
See this article

A time domain analysis of PML models in acoustics

J. Diaz and P. Joly
Computer Methods in Applied Mechanics and Engineering 195 (29-32) 3820 (2006)
DOI: 10.1016/j.cma.2005.02.031
See this article

Perfectly matched layers for the heat and advection–diffusion equations

Nicolas Lantos and Frédéric Nataf
Journal of Computational Physics 229 (24) 9042 (2010)
DOI: 10.1016/j.jcp.2010.08.004
See this article

An effective preconditioner for a PML system for electromagnetic scattering problem

Qiya Hu, Chunmei Liu, Shi Shu and Jun Zou
ESAIM: Mathematical Modelling and Numerical Analysis 49 (3) 839 (2015)
DOI: 10.1051/m2an/2014058
See this article

A Krylov Stability-Corrected Coordinate-Stretching Method to Simulate Wave Propagation in Unbounded Domains

Vladimir Druskin and Rob Remis
SIAM Journal on Scientific Computing 35 (2) B376 (2013)
DOI: 10.1137/12087356X
See this article

A new family of first-order boundary conditions for the Maxwell system: derivation, well-posedness and long-time behavior

Hélène Barucq
Journal de Mathématiques Pures et Appliquées 82 (1) 67 (2003)
DOI: 10.1016/S0021-7824(02)00002-8
See this article

A new absorbing layer for elastic waves

Daniel Appelö and Gunilla Kreiss
Journal of Computational Physics 215 (2) 642 (2006)
DOI: 10.1016/j.jcp.2005.11.006
See this article

Mathematical analysis of a PML model obtained with stretched coordinates and its application to backward wave propagation in metamaterials

Yunqing Huang, Jichun Li and Wei Yang
Numerical Methods for Partial Differential Equations 30 (5) 1558 (2014)
DOI: 10.1002/num.21824
See this article

Energy Decay and Stability of a Perfectly Matched Layer For the Wave Equation

Daniel H. Baffet, Marcus J. Grote, Sébastien Imperiale and Maryna Kachanovska
Journal of Scientific Computing (2019)
DOI: 10.1007/s10915-019-01089-9
See this article

Select Advances in Computational Accelerator Physics

John R. Cary, Dan T. Abell, George I. Bell, et al.
IEEE Transactions on Nuclear Science 63 (2) 823 (2016)
DOI: 10.1109/TNS.2015.2500686
See this article

The Role of Numerical Boundary Procedures in the Stability of Perfectly Matched Layers

Kenneth Duru
SIAM Journal on Scientific Computing 38 (2) A1171 (2016)
DOI: 10.1137/140976443
See this article

Numerical analysis of a PML model for time-dependent Maxwell’s equations

Yunqing Huang and Jichun Li
Journal of Computational and Applied Mathematics 235 (13) 3932 (2011)
DOI: 10.1016/j.cam.2011.01.039
See this article

Numerical interaction of boundary waves with perfectly matched layers in two space dimensional elastic waveguides

Kenneth Duru and Gunilla Kreiss
Wave Motion (2013)
DOI: 10.1016/j.wavemoti.2013.11.002
See this article

An unsplit convolutional perfectly matched layer improved at grazing incidence for seismic wave propagation in poroelastic media

Roland Martin, Dimitri Komatitsch and Abdelâziz Ezziani
GEOPHYSICS 73 (4) T51 (2008)
DOI: 10.1190/1.2939484
See this article

An unsplit convolutional perfectly matched layer improved at grazing incidence for the seismic wave equation

Dimitri Komatitsch and Roland Martin
GEOPHYSICS 72 (5) SM155 (2007)
DOI: 10.1190/1.2757586
See this article

A new approach to perfectly matched layers for the linearized Euler system

Frédéric Nataf
Journal of Computational Physics 214 (2) 757 (2006)
DOI: 10.1016/j.jcp.2005.10.014
See this article

Stability of perfectly matched layers, group velocities and anisotropic waves

E. Bécache, S. Fauqueux and P. Joly
Journal of Computational Physics 188 (2) 399 (2003)
DOI: 10.1016/S0021-9991(03)00184-0
See this article

Energy-dissipation splitting finite-difference time-domain method for Maxwell equations with perfectly matched layers

Jialin Hong, Lihai Ji and Linghua Kong
Journal of Computational Physics 269 201 (2014)
DOI: 10.1016/j.jcp.2014.03.025
See this article

An optimal perfectly matched layer with unbounded absorbing function for time-harmonic acoustic scattering problems

A. Bermúdez, L. Hervella-Nieto, A. Prieto and R. Rodrı´guez
Journal of Computational Physics 223 (2) 469 (2007)
DOI: 10.1016/j.jcp.2006.09.018
See this article

An Exact Bounded Perfectly Matched Layer for Time-Harmonic Scattering Problems

A. Bermúdez, L. Hervella-Nieto, A. Prieto and R. Rodríguez
SIAM Journal on Scientific Computing 30 (1) 312 (2008)
DOI: 10.1137/060670912
See this article

Well-posedness and exponential stability of Maxwell-like systems coupled with strongly absorbing layers

Hélène Barucq and Mathieu Fontes
Journal de Mathématiques Pures et Appliquées 87 (3) 253 (2007)
DOI: 10.1016/j.matpur.2007.01.001
See this article

A modified and stable version of a perfectly matched layer technique for the 3-d second order wave equation in time domain with an application to aeroacoustics

Barbara Kaltenbacher, Manfred Kaltenbacher and Imbo Sim
Journal of Computational Physics 235 407 (2013)
DOI: 10.1016/j.jcp.2012.10.016
See this article

Mathematical Foundations of Computational Electromagnetism

Franck Assous, Patrick Ciarlet and Simon Labrunie
Applied Mathematical Sciences, Mathematical Foundations of Computational Electromagnetism 198 1 (2018)
DOI: 10.1007/978-3-319-70842-3_1
See this article

Mathematical Foundations of Computational Electromagnetism

Franck Assous, Patrick Ciarlet and Simon Labrunie
Applied Mathematical Sciences, Mathematical Foundations of Computational Electromagnetism 198 191 (2018)
DOI: 10.1007/978-3-319-70842-3_5
See this article

Analysis and application of an equivalent Berenger’s PML model

Yunqing Huang, Hongen Jia and Jichun Li
Journal of Computational and Applied Mathematics 333 157 (2018)
DOI: 10.1016/j.cam.2017.10.036
See this article

Time-domain PML formulation for modeling viscoelastic waves with Rayleigh-type damping in an unbounded domain: Theory and application in ABAQUS

Masoud Khazaei Poul and Aspasia Zerva
Finite Elements in Analysis and Design 152 1 (2018)
DOI: 10.1016/j.finel.2018.08.004
See this article

On the Long-Time Behavior of Unsplit Perfectly Matched Layers

E. Becache, P.G. Petropoulos and S.D. Gedney
IEEE Transactions on Antennas and Propagation 52 (5) 1335 (2004)
DOI: 10.1109/TAP.2004.827253
See this article

High-order full discretization for anisotropic wave equations

A.M. Portillo
Applied Mathematics and Computation 323 1 (2018)
DOI: 10.1016/j.amc.2017.11.045
See this article

Discontinuous Galerkin time‐domain solution of Maxwell's equations on locally refined grids with fictitious domains

A. Bouquet, C. Dedeban and S. Piperno
COMPEL - The international journal for computation and mathematics in electrical and electronic engineering 29 (3) 578 (2010)
DOI: 10.1108/03321641011028206
See this article

Non-deteriorating time domain numerical algorithms for Maxwell's electrodynamics

S. Petropavlovsky and S. Tsynkov
Journal of Computational Physics 336 1 (2017)
DOI: 10.1016/j.jcp.2017.01.068
See this article

Perfectly Matched Layers for Hyperbolic Systems: General Formulation, Well‐posedness, and Stability

Daniel Appelö, Thomas Hagstrom and Gunilla Kreiss
SIAM Journal on Applied Mathematics 67 (1) 1 (2006)
DOI: 10.1137/050639107
See this article

Near-Optimal Perfectly Matched Layers for Indefinite Helmholtz Problems

Vladimir Druskin, Stefan Güttel and Leonid Knizhnerman
SIAM Review 58 (1) 90 (2016)
DOI: 10.1137/140966927
See this article

Long-Time Stability and Convergence of the Uniaxial Perfectly Matched Layer Method for Time-Domain Acoustic Scattering Problems

Zhiming Chen and Xinming Wu
SIAM Journal on Numerical Analysis 50 (5) 2632 (2012)
DOI: 10.1137/110835268
See this article

Boundary Waves and Stability of the Perfectly Matched Layer for the Two Space Dimensional Elastic Wave Equation in Second Order Form

Kenneth Duru and Gunilla Kreiss
SIAM Journal on Numerical Analysis 52 (6) 2883 (2014)
DOI: 10.1137/13093563X
See this article

Error analysis of an enhanced DtN-FE method for exterior scattering problems

David P. Nicholls and Nilima Nigam
Numerische Mathematik 105 (2) 267 (2006)
DOI: 10.1007/s00211-006-0040-3
See this article

Time-Domain Finite Element Methods for Maxwell's Equations in Metamaterials

Jichun Li and Yunqing Huang
Springer Series in Computational Mathematics, Time-Domain Finite Element Methods for Maxwell's Equations in Metamaterials 43 215 (2013)
DOI: 10.1007/978-3-642-33789-5_8
See this article

A Modified PML Acoustic Wave Equation

Dojin Kim
Symmetry 11 (2) 177 (2019)
DOI: 10.3390/sym11020177
See this article

Perfectly matched layers in 1-d : energy decay for continuous and semi-discrete waves

S. Ervedoza and E. Zuazua
Numerische Mathematik 109 (4) 597 (2008)
DOI: 10.1007/s00211-008-0153-y
See this article

Nobody's Perfect; Matched Layers for Heterogeneous Media

Laurence Halpern, Ludovic Métivier, Jeffrey Rauch and Juliette Ryan
SIAM Journal on Scientific Computing 41 (1) A1 (2019)
DOI: 10.1137/17M1114752
See this article

Long-Time Performance of Unsplit PMLs with Explicit Second Order Schemes

S. Abarbanel, H. Qasimov and S. Tsynkov
Journal of Scientific Computing 41 (1) 1 (2009)
DOI: 10.1007/s10915-009-9282-4
See this article

Stability analysis of FDTD to UPML for time dependent Maxwell equations

NengSheng Fang and Lung-An Ying
Science in China Series A: Mathematics 52 (4) 794 (2009)
DOI: 10.1007/s11425-009-0015-9
See this article

An unsplit convolutional perfectly matched layer technique improved at grazing incidence for the viscoelastic wave equation

Roland Martin and Dimitri Komatitsch
Geophysical Journal International 179 (1) 333 (2009)
DOI: 10.1111/j.1365-246X.2009.04278.x
See this article

Waves in Nonlinear Pre-Stressed Materials

Patrick Joly
CISM Courses and Lectures, Waves in Nonlinear Pre-Stressed Materials 495 181 (2007)
DOI: 10.1007/978-3-211-73572-5_6
See this article

Perfectly Matched Layers for Time-Harmonic Second Order Elliptic Problems

A. Bermúdez, L. Hervella-Nieto, A. Prieto and R. Rodríguez
Archives of Computational Methods in Engineering 17 (1) 77 (2010)
DOI: 10.1007/s11831-010-9041-6
See this article

Computational Acoustics of Noise Propagation in Fluids - Finite and Boundary Element Methods

Alfredo Bermúdez, Luis Hervella–Nieto, Andrés Prieto and Rodolfo Rodríguez
Computational Acoustics of Noise Propagation in Fluids - Finite and Boundary Element Methods 167 (2008)
DOI: 10.1007/978-3-540-77448-8_7
See this article

A staggered-grid finite-difference scheme optimized in the time–space domain for modeling scalar-wave propagation in geophysical problems

Sirui Tan and Lianjie Huang
Journal of Computational Physics 276 613 (2014)
DOI: 10.1016/j.jcp.2014.07.044
See this article

Stable perfectly matched layers for a cold plasma in a strong background magnetic field

Eliane Bécache, Patrick Joly and Maryna Kachanovska
Journal of Computational Physics 341 76 (2017)
DOI: 10.1016/j.jcp.2017.03.051
See this article

Topics in Computational Wave Propagation

Thomas Hagstrom
Lecture Notes in Computational Science and Engineering, Topics in Computational Wave Propagation 31 1 (2003)
DOI: 10.1007/978-3-642-55483-4_1
See this article

Mathematical and Numerical Aspects of Wave Propagation WAVES 2003

Eliane Bécache, Peter G. Petropoulos and Stephen D. Gedney
Mathematical and Numerical Aspects of Wave Propagation WAVES 2003 120 (2003)
DOI: 10.1007/978-3-642-55856-6_19
See this article

Complex frequency‐shifted multi‐axial perfectly matched layer for frequency‐domain seismic wavefield simulation in anisotropic media

Zhencong Zhao and Jingyi Chen
Geophysical Prospecting 67 (5) 1329 (2019)
DOI: 10.1111/1365-2478.12780
See this article

Perfectly matched layers for convex truncated domains with discontinuous Galerkin time domain simulations

Axel Modave, Jonathan Lambrechts and Christophe Geuzaine
Computers & Mathematics with Applications 73 (4) 684 (2017)
DOI: 10.1016/j.camwa.2016.12.027
See this article

Discontinuous Galerkin discretizations of the Boltzmann–BGK equations for nearly incompressible flows: Semi-analytic time stepping and absorbing boundary layers

A. Karakus, N. Chalmers, J.S. Hesthaven and T. Warburton
Journal of Computational Physics 390 175 (2019)
DOI: 10.1016/j.jcp.2019.03.050
See this article

An Iterative Two-Grid Method of A Finite Element PML Approximation for the Two Dimensional Maxwell Problem

Chunmei Liu, Shi Shu, Yunqing Huang, Liuqiang Zhong and Junxian Wang
Advances in Applied Mathematics and Mechanics 4 (2) 175 (2012)
DOI: 10.4208/aamm.10-m11166
See this article

Time-Domain Finite Element Methods for Maxwell's Equations in Metamaterials

Jichun Li and Yunqing Huang
Springer Series in Computational Mathematics, Time-Domain Finite Element Methods for Maxwell's Equations in Metamaterials 43 1 (2013)
DOI: 10.1007/978-3-642-33789-5_1
See this article

Time-Domain Finite Element Methods for Maxwell's Equations in Metamaterials

Jichun Li and Yunqing Huang
Springer Series in Computational Mathematics, Time-Domain Finite Element Methods for Maxwell's Equations in Metamaterials 43 127 (2013)
DOI: 10.1007/978-3-642-33789-5_4
See this article

Time-Domain Finite Element Methods for Maxwell's Equations in Metamaterials

Jichun Li and Yunqing Huang
Springer Series in Computational Mathematics, Time-Domain Finite Element Methods for Maxwell's Equations in Metamaterials 43 53 (2013)
DOI: 10.1007/978-3-642-33789-5_3
See this article

Time-Domain Finite Element Methods for Maxwell's Equations in Metamaterials

Jichun Li and Yunqing Huang
Springer Series in Computational Mathematics, Time-Domain Finite Element Methods for Maxwell's Equations in Metamaterials 43 195 (2013)
DOI: 10.1007/978-3-642-33789-5_7
See this article

Time-Domain Finite Element Methods for Maxwell's Equations in Metamaterials

Jichun Li and Yunqing Huang
Springer Series in Computational Mathematics, Time-Domain Finite Element Methods for Maxwell's Equations in Metamaterials 43 241 (2013)
DOI: 10.1007/978-3-642-33789-5_9
See this article

Time-Domain Finite Element Methods for Maxwell's Equations in Metamaterials

Jichun Li and Yunqing Huang
Springer Series in Computational Mathematics, Time-Domain Finite Element Methods for Maxwell's Equations in Metamaterials 43 173 (2013)
DOI: 10.1007/978-3-642-33789-5_6
See this article

Time-Domain Finite Element Methods for Maxwell's Equations in Metamaterials

Jichun Li and Yunqing Huang
Springer Series in Computational Mathematics, Time-Domain Finite Element Methods for Maxwell's Equations in Metamaterials 43 19 (2013)
DOI: 10.1007/978-3-642-33789-5_2
See this article

Time-Domain Finite Element Methods for Maxwell's Equations in Metamaterials

Jichun Li and Yunqing Huang
Springer Series in Computational Mathematics, Time-Domain Finite Element Methods for Maxwell's Equations in Metamaterials 43 151 (2013)
DOI: 10.1007/978-3-642-33789-5_5
See this article