Articles citing this article

The Citing articles tool gives a list of articles citing the current article.
The citing articles come from EDP Sciences database, as well as other publishers participating in CrossRef Cited-by Linking Program. You can set up your personal account to receive an email alert each time this article is cited by a new article (see the menu on the right-hand side of the abstract page).

Cited article:

A Phase-Space Discontinuous Galerkin Scheme for the Radiative Transfer Equation in Slab Geometry

Riccardo Bardin, Fleurianne Bertrand, Olena Palii and Matthias Schlottbom
Computational Methods in Applied Mathematics 24 (3) 557 (2024)
https://doi.org/10.1515/cmam-2023-0090

Coupling conditions for linear hyperbolic relaxation systems in two-scale problems

Juntao Huang, Ruo Li and Yizhou Zhou
Mathematics of Computation 92 (343) 2133 (2023)
https://doi.org/10.1090/mcom/3845

An asymptotic preserving method for the linear transport equation on general meshes

Pierre Anguill, Patricia Cargo, Cedric Énaux, et al.
Journal of Computational Physics 450 110859 (2022)
https://doi.org/10.1016/j.jcp.2021.110859

Second-order diffusion limit for the phonon transport equation: asymptotics and numerics

Anjali Nair, Qin Li and Weiran Sun
Partial Differential Equations and Applications 3 (3) (2022)
https://doi.org/10.1007/s42985-022-00172-5

A Truly Two-Dimensional, Asymptotic-Preserving Scheme for a Discrete Model of Radiative Transfer

Laurent Gosse and Nicolas Vauchelet
SIAM Journal on Numerical Analysis 58 (2) 1092 (2020)
https://doi.org/10.1137/19M1239829

Asymptotically complexity diminishing schemes (ACDS) for kinetic equations in the diffusive scaling

Anaïs Crestetto, Nicolas Crouseilles, Giacomo Dimarco and Mohammed Lemou
Journal of Computational Physics 394 243 (2019)
https://doi.org/10.1016/j.jcp.2019.05.032

Asymptotic-Preserving Monte Carlo Methods for Transport Equations in the Diffusive Limit

G. Dimarco, L. Pareschi and G. Samaey
SIAM Journal on Scientific Computing 40 (1) A504 (2018)
https://doi.org/10.1137/17M1140741

Efficient numerical methods for multiscale crowd dynamics with emotional contagion

Li Wang, Martin B. Short and Andrea L. Bertozzi
Mathematical Models and Methods in Applied Sciences 27 (01) 205 (2017)
https://doi.org/10.1142/S0218202517400073

Asymptotic analysis of discrete schemes for non-equilibrium radiation diffusion

Xia Cui, Guang-wei Yuan and Zhi-jun Shen
Journal of Computational Physics 313 415 (2016)
https://doi.org/10.1016/j.jcp.2016.02.061

Dynamic Model Adaptation for Multiscale Simulation of Hyperbolic Systems with Relaxation

Hélène Mathis, Clément Cancès, Edwige Godlewski and Nicolas Seguin
Journal of Scientific Computing 63 (3) 820 (2015)
https://doi.org/10.1007/s10915-014-9915-0

Diffusion approximations and domain decomposition method of linear transport equations: Asymptotics and numerics

Qin Li, Jianfeng Lu and Weiran Sun
Journal of Computational Physics 292 141 (2015)
https://doi.org/10.1016/j.jcp.2015.03.014

A hybrid transport-diffusion method for 2D transport problems with diffusive subdomains

Nicholas D. Stehle, Dmitriy Y. Anistratov and Marvin L. Adams
Journal of Computational Physics 270 325 (2014)
https://doi.org/10.1016/j.jcp.2014.03.056

Implicit-Explicit Runge-Kutta Schemes for the Boltzmann-Poisson System for Semiconductors

Giacomo Dimarco, Lorenzo Pareschi and Vittorio Rispoli
Communications in Computational Physics 15 (5) 1291 (2014)
https://doi.org/10.4208/cicp.090513.151113a

Well-Posedness and Singular Limit of a Semilinear Hyperbolic Relaxation System with a Two-Scale Discontinuous Relaxation Rate

Frédéric Coquel, Shi Jin, Jian-Guo Liu and Li Wang
Archive for Rational Mechanics and Analysis 214 (3) 1051 (2014)
https://doi.org/10.1007/s00205-014-0773-6

Hybrid forward-peaked-scattering-diffusion approximations for light propagation in turbid media with low-scattering regions

O. Lehtikangas and T. Tarvainen
Journal of Quantitative Spectroscopy and Radiative Transfer 116 132 (2013)
https://doi.org/10.1016/j.jqsrt.2012.10.017

A dynamic multi-scale model for transient radiative transfer calculations

M. Roger and N. Crouseilles
Journal of Quantitative Spectroscopy and Radiative Transfer 116 110 (2013)
https://doi.org/10.1016/j.jqsrt.2012.10.009

Image reconstruction in diffuse optical tomography using the coupled radiative transport–diffusion model

Tanja Tarvainen, Ville Kolehmainen, Simon R. Arridge and Jari P. Kaipio
Journal of Quantitative Spectroscopy and Radiative Transfer 112 (16) 2600 (2011)
https://doi.org/10.1016/j.jqsrt.2011.07.008

A New Asymptotic Preserving Scheme Based on Micro-Macro Formulation for Linear Kinetic Equations in the Diffusion Limit

Mohammed Lemou and Luc Mieussens
SIAM Journal on Scientific Computing 31 (1) 334 (2008)
https://doi.org/10.1137/07069479X

Reconstruction of subdomain boundaries of piecewise constant coefficients of the radiative transfer equation from optical tomography data

S R Arridge, O Dorn, J P Kaipio, et al.
Inverse Problems 22 (6) 2175 (2006)
https://doi.org/10.1088/0266-5611/22/6/016

Macroscopic Fluid Models with Localized Kinetic Upscaling Effects

Pierre Degond, Jian‐Guo Liu and Luc Mieussens
Multiscale Modeling & Simulation 5 (3) 940 (2006)
https://doi.org/10.1137/060651574

Finite element model for the coupled radiative transfer equation and diffusion approximation

T. Tarvainen, M. Vauhkonen, V. Kolehmainen and J. P. Kaipio
International Journal for Numerical Methods in Engineering 65 (3) 383 (2006)
https://doi.org/10.1002/nme.1451

Coupled radiative transfer equation and diffusion approximation model for photon migration in turbid medium with low-scattering and non-scattering regions

Tanja Tarvainen, Marko Vauhkonen, Ville Kolehmainen, Simon R Arridge and Jari P Kaipio
Physics in Medicine and Biology 50 (20) 4913 (2005)
https://doi.org/10.1088/0031-9155/50/20/011

A Domain Decomposition Analysis for a Two-Scale Linear Transport Problem

François Golse, Shi Jin and C. David Levermore
ESAIM: Mathematical Modelling and Numerical Analysis 37 (6) 869 (2003)
https://doi.org/10.1051/m2an:2003059

Generalized diffusion model in optical tomography with clear layers

Guillaume Bal and Kui Ren
Journal of the Optical Society of America A 20 (12) 2355 (2003)
https://doi.org/10.1364/JOSAA.20.002355