The Citing articles tool gives a list of articles citing the current article. The citing articles come from EDP Sciences database, as well as other publishers participating in CrossRef Cited-by Linking Program . You can set up your personal account to receive an email alert each time this article is cited by a new article (see the menu on the right-hand side of the abstract page).
Cited article:
Guillaume Bal , Yvon Maday
ESAIM: M2AN, 36 1 (2002) 69-86
Published online: 2002-04-15
This article has been cited by the following article(s):
33 articles
A Phase-Space Discontinuous Galerkin Scheme for the Radiative Transfer Equation in Slab Geometry
Riccardo Bardin, Fleurianne Bertrand, Olena Palii and Matthias Schlottbom Computational Methods in Applied Mathematics 24 (3) 557 (2024) https://doi.org/10.1515/cmam-2023-0090
Coupling conditions for linear hyperbolic relaxation systems in two-scale problems
Juntao Huang, Ruo Li and Yizhou Zhou Mathematics of Computation 92 (343) 2133 (2023) https://doi.org/10.1090/mcom/3845
An asymptotic preserving method for the linear transport equation on general meshes
Pierre Anguill, Patricia Cargo, Cedric Énaux, et al. Journal of Computational Physics 450 110859 (2022) https://doi.org/10.1016/j.jcp.2021.110859
Second-order diffusion limit for the phonon transport equation: asymptotics and numerics
Anjali Nair, Qin Li and Weiran Sun Partial Differential Equations and Applications 3 (3) (2022) https://doi.org/10.1007/s42985-022-00172-5
A Truly Two-Dimensional, Asymptotic-Preserving Scheme for a Discrete Model of Radiative Transfer
Laurent Gosse and Nicolas Vauchelet SIAM Journal on Numerical Analysis 58 (2) 1092 (2020) https://doi.org/10.1137/19M1239829
Asymptotically complexity diminishing schemes (ACDS) for kinetic equations in the diffusive scaling
Anaïs Crestetto, Nicolas Crouseilles, Giacomo Dimarco and Mohammed Lemou Journal of Computational Physics 394 243 (2019) https://doi.org/10.1016/j.jcp.2019.05.032
Asymptotic-Preserving Monte Carlo Methods for Transport Equations in the Diffusive Limit
G. Dimarco, L. Pareschi and G. Samaey SIAM Journal on Scientific Computing 40 (1) A504 (2018) https://doi.org/10.1137/17M1140741
Efficient numerical methods for multiscale crowd dynamics with emotional contagion
Li Wang, Martin B. Short and Andrea L. Bertozzi Mathematical Models and Methods in Applied Sciences 27 (01) 205 (2017) https://doi.org/10.1142/S0218202517400073
Asymptotic analysis of discrete schemes for non-equilibrium radiation diffusion
Xia Cui, Guang-wei Yuan and Zhi-jun Shen Journal of Computational Physics 313 415 (2016) https://doi.org/10.1016/j.jcp.2016.02.061
Dynamic Model Adaptation for Multiscale Simulation of Hyperbolic Systems with Relaxation
Hélène Mathis, Clément Cancès, Edwige Godlewski and Nicolas Seguin Journal of Scientific Computing 63 (3) 820 (2015) https://doi.org/10.1007/s10915-014-9915-0
Handbook of Mathematical Methods in Imaging
Simon R. Arridge, Jari P. Kaipio, Ville Kolehmainen and Tanja Tarvainen Handbook of Mathematical Methods in Imaging 1033 (2015) https://doi.org/10.1007/978-1-4939-0790-8_21
Diffusion approximations and domain decomposition method of linear transport equations: Asymptotics and numerics
Qin Li, Jianfeng Lu and Weiran Sun Journal of Computational Physics 292 141 (2015) https://doi.org/10.1016/j.jcp.2015.03.014
Rong Yang and Xudeng Hang 100 (2015) https://doi.org/10.1109/ICCSA.2015.20
A hybrid transport-diffusion method for 2D transport problems with diffusive subdomains
Nicholas D. Stehle, Dmitriy Y. Anistratov and Marvin L. Adams Journal of Computational Physics 270 325 (2014) https://doi.org/10.1016/j.jcp.2014.03.056
Implicit-Explicit Runge-Kutta Schemes for the Boltzmann-Poisson System for Semiconductors
Giacomo Dimarco, Lorenzo Pareschi and Vittorio Rispoli Communications in Computational Physics 15 (5) 1291 (2014) https://doi.org/10.4208/cicp.090513.151113a
Well-Posedness and Singular Limit of a Semilinear Hyperbolic Relaxation System with a Two-Scale Discontinuous Relaxation Rate
Frédéric Coquel, Shi Jin, Jian-Guo Liu and Li Wang Archive for Rational Mechanics and Analysis 214 (3) 1051 (2014) https://doi.org/10.1007/s00205-014-0773-6
Hybrid forward-peaked-scattering-diffusion approximations for light propagation in turbid media with low-scattering regions
O. Lehtikangas and T. Tarvainen Journal of Quantitative Spectroscopy and Radiative Transfer 116 132 (2013) https://doi.org/10.1016/j.jqsrt.2012.10.017
A dynamic multi-scale model for transient radiative transfer calculations
M. Roger and N. Crouseilles Journal of Quantitative Spectroscopy and Radiative Transfer 116 110 (2013) https://doi.org/10.1016/j.jqsrt.2012.10.009
Image reconstruction in diffuse optical tomography using the coupled radiative transport–diffusion model
Tanja Tarvainen, Ville Kolehmainen, Simon R. Arridge and Jari P. Kaipio Journal of Quantitative Spectroscopy and Radiative Transfer 112 (16) 2600 (2011) https://doi.org/10.1016/j.jqsrt.2011.07.008
Handbook of Mathematical Methods in Imaging
Simon R. Arridge, Jari P. Kaipio, Ville Kolehmainen and Tanja Tarvainen Handbook of Mathematical Methods in Imaging 735 (2011) https://doi.org/10.1007/978-0-387-92920-0_17
Optical tomography: forward and inverse problems
Simon R Arridge and John C Schotland Inverse Problems 25 (12) 123010 (2009) https://doi.org/10.1088/0266-5611/25/12/123010
A New Asymptotic Preserving Scheme Based on Micro-Macro Formulation for Linear Kinetic Equations in the Diffusion Limit
Mohammed Lemou and Luc Mieussens SIAM Journal on Scientific Computing 31 (1) 334 (2008) https://doi.org/10.1137/07069479X
Reconstruction in optical tomography using thePNapproximations
S Wright, M Schweiger and S R Arridge Measurement Science and Technology 18 (1) 79 (2007) https://doi.org/10.1088/0957-0233/18/1/010
Reconstruction of subdomain boundaries of piecewise constant coefficients of the radiative transfer equation from optical tomography data
S R Arridge, O Dorn, J P Kaipio, et al. Inverse Problems 22 (6) 2175 (2006) https://doi.org/10.1088/0266-5611/22/6/016
Macroscopic Fluid Models with Localized Kinetic Upscaling Effects
Pierre Degond, Jian‐Guo Liu and Luc Mieussens Multiscale Modeling & Simulation 5 (3) 940 (2006) https://doi.org/10.1137/060651574
Computational Methods in Transport
Guillaume Bal Lecture Notes in Computational Science and Engineering, Computational Methods in Transport 48 373 (2006) https://doi.org/10.1007/3-540-28125-8_17
Finite element model for the coupled radiative transfer equation and diffusion approximation
T. Tarvainen, M. Vauhkonen, V. Kolehmainen and J. P. Kaipio International Journal for Numerical Methods in Engineering 65 (3) 383 (2006) https://doi.org/10.1002/nme.1451
Tanja Tarvainen, Marko Vauhkonen, Ville Kolehmainen, Jari P. Kaipio, Juha Heiskala and Simon R. Arridge SH49 (2006) https://doi.org/10.1364/BIO.2006.SH49
Coupled radiative transfer equation and diffusion approximation model for photon migration in turbid medium with low-scattering and non-scattering regions
Tanja Tarvainen, Marko Vauhkonen, Ville Kolehmainen, Simon R Arridge and Jari P Kaipio Physics in Medicine and Biology 50 (20) 4913 (2005) https://doi.org/10.1088/0031-9155/50/20/011
A Smooth Transition Model between Kinetic and Diffusion Equations
Pierre Degond and Shi Jin SIAM Journal on Numerical Analysis 42 (6) 2671 (2005) https://doi.org/10.1137/S0036142903430414
A Domain Decomposition Analysis for a Two-Scale Linear Transport Problem
François Golse, Shi Jin and C. David Levermore ESAIM: Mathematical Modelling and Numerical Analysis 37 (6) 869 (2003) https://doi.org/10.1051/m2an:2003059
Generalized diffusion model in optical tomography with clear layers
Guillaume Bal and Kui Ren Journal of the Optical Society of America A 20 (12) 2355 (2003) https://doi.org/10.1364/JOSAA.20.002355
Particle Transport through Scattering Regions with Clear Layers and Inclusions
Guillaume Bal Journal of Computational Physics 180 (2) 659 (2002) https://doi.org/10.1006/jcph.2002.7111