Articles citing this article

The Citing articles tool gives a list of articles citing the current article.
The citing articles come from EDP Sciences database, as well as other publishers participating in CrossRef Cited-by Linking Program. You can set up your personal account to receive an email alert each time this article is cited by a new article (see the menu on the right-hand side of the abstract page).

Cited article:

Multiscale modeling and analysis for some special additive noises driven stochastic partial differential equations

Shan Zhang, Mengnan Li and Xiaofei Guan
Numerical Methods for Partial Differential Equations 39 (2) 1376 (2023)
https://doi.org/10.1002/num.22938

An iterative method for elliptic problems with rapidly oscillating coefficients

Scott Armstrong, Antti Hannukainen, Tuomo Kuusi and Jean-Christophe Mourrat
ESAIM: Mathematical Modelling and Numerical Analysis 55 (1) 37 (2021)
https://doi.org/10.1051/m2an/2020080

Generalized multiscale multicontinuum model for fractured vuggy carbonate reservoirs

Min Wang, Siu Wun Cheung, Eric T. Chung, Maria Vasilyeva and Yuhe Wang
Journal of Computational and Applied Mathematics 366 112370 (2020)
https://doi.org/10.1016/j.cam.2019.112370

Reconstruction of Quasi-Local Numerical Effective Models from Low-Resolution Measurements

A. Caiazzo, R. Maier and D. Peterseim
Journal of Scientific Computing 85 (1) (2020)
https://doi.org/10.1007/s10915-020-01304-y

Reduced-order deep learning for flow dynamics. The interplay between deep learning and model reduction

Min Wang, Siu Wun Cheung, Wing Tat Leung, et al.
Journal of Computational Physics 401 108939 (2020)
https://doi.org/10.1016/j.jcp.2019.108939

Efficient deep learning techniques for multiphase flow simulation in heterogeneous porousc media

Yating Wang and Guang Lin
Journal of Computational Physics 401 108968 (2020)
https://doi.org/10.1016/j.jcp.2019.108968

Multiscale Analysis and Simulation of a Signaling Process With Surface Diffusion

Mariya Ptashnyk and Chandrasekhar Venkataraman
Multiscale Modeling & Simulation 18 (2) 851 (2020)
https://doi.org/10.1137/18M1185661

The Choice of Representative Volumes in the Approximation of Effective Properties of Random Materials

Julian Fischer
Archive for Rational Mechanics and Analysis 234 (2) 635 (2019)
https://doi.org/10.1007/s00205-019-01400-w

On the homogenization of the acoustic wave propagation in perforated ducts of finite length for an inviscid and a viscous model

Adrien Semin and Kersten Schmidt
Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 474 (2210) 20170708 (2018)
https://doi.org/10.1098/rspa.2017.0708

Multiscale Modelling and Analysis of Signalling Processes in Tissues with Non-Periodic Distribution of Cells

Mariya Ptashnyk
Vietnam Journal of Mathematics 45 (1-2) 295 (2017)
https://doi.org/10.1007/s10013-016-0232-9

Computation of Quasi-Local Effective Diffusion Tensors and Connections to the Mathematical Theory of Homogenization

D. Gallistl and D. Peterseim
Multiscale Modeling & Simulation 15 (4) 1530 (2017)
https://doi.org/10.1137/16M1088533

Adaptive multiscale model reduction with Generalized Multiscale Finite Element Methods

Eric Chung, Yalchin Efendiev and Thomas Y. Hou
Journal of Computational Physics 320 69 (2016)
https://doi.org/10.1016/j.jcp.2016.04.054

A-posteriori error estimate for a heterogeneous multiscale approximation of advection-diffusion problems with large expected drift

Mario Ohlberger and Patrick Henning
Discrete and Continuous Dynamical Systems - Series S 9 (5) 1393 (2016)
https://doi.org/10.3934/dcdss.2016056

Locally Periodic Unfolding Method and Two-Scale Convergence on Surfaces of Locally Periodic Microstructures

Mariya Ptashnyk
Multiscale Modeling & Simulation 13 (3) 1061 (2015)
https://doi.org/10.1137/140978405

An Adaptive Multiscale Finite Element Method

Patrick Henning, Mario Ohlberger and Ben Schweizer
Multiscale Modeling & Simulation 12 (3) 1078 (2014)
https://doi.org/10.1137/120886856

Two-scale homogenization of nonlinear reaction-diffusion systems with slow diffusion

Alexander Mielke, Sina Reichelt and Marita Thomas
Networks & Heterogeneous Media 9 (2) 353 (2014)
https://doi.org/10.3934/nhm.2014.9.353

Reduced-order modelling numerical homogenization

A. Abdulle and Y. Bai
Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 372 (2021) 20130388 (2014)
https://doi.org/10.1098/rsta.2013.0388

The AL Basis for the Solution of Elliptic Problems in Heterogeneous Media

L. Grasedyck, I. Greff and S. Sauter
Multiscale Modeling & Simulation 10 (1) 245 (2012)
https://doi.org/10.1137/11082138X

Finite Elements for Elliptic Problems with Highly Varying, Nonperiodic Diffusion Matrix

D. Peterseim and S. Sauter
Multiscale Modeling & Simulation 10 (3) 665 (2012)
https://doi.org/10.1137/10081839X

Convergence of MsFEM approximations for elliptic, non-periodic homogenization problems

Patrick Henning
Networks and Heterogeneous Media 7 (3) 503 (2012)
https://doi.org/10.3934/nhm.2012.7.503

3D Composite Finite Elements for Elliptic Boundary Value Problems with Discontinuous Coefficients

Tobias Preusser, Martin Rumpf, Stefan Sauter and Lars Ole Schwen
SIAM Journal on Scientific Computing 33 (5) 2115 (2011)
https://doi.org/10.1137/100791750

Adaptive finite element heterogeneous multiscale method for homogenization problems

A. Abdulle and A. Nonnenmacher
Computer Methods in Applied Mechanics and Engineering 200 (37-40) 2710 (2011)
https://doi.org/10.1016/j.cma.2010.06.012

The heterogeneous multiscale finite element method for advection-diffusion problems with rapidly oscillating coefficients and large expected drift

Patrick Henning and Mario Ohlberger
Networks & Heterogeneous Media 5 (4) 711 (2010)
https://doi.org/10.3934/nhm.2010.5.711

The heterogeneous multiscale finite element method for elliptic homogenization problems in perforated domains

Patrick Henning and Mario Ohlberger
Numerische Mathematik 113 (4) 601 (2009)
https://doi.org/10.1007/s00211-009-0244-4

Two-Scale Homogenization for Evolutionary Variational Inequalities via the Energetic Formulation

Alexander Mielke and Aida M. Timofte
SIAM Journal on Mathematical Analysis 39 (2) 642 (2007)
https://doi.org/10.1137/060672790

Numerical methods for multiscale transport equations and application to two-phase porous media flow

Xingye Yue and Weinan E
Journal of Computational Physics 210 (2) 656 (2005)
https://doi.org/10.1016/j.jcp.2005.05.009

A Multiscale Finite Element Method for Numerical Homogenization

Grégoire Allaire and Robert Brizzi
Multiscale Modeling & Simulation 4 (3) 790 (2005)
https://doi.org/10.1137/040611239

Finite Difference Approximation of Homogenization Problems for Elliptic Equations

Rafael Orive and Enrique Zuazua
Multiscale Modeling & Simulation 4 (1) 36 (2005)
https://doi.org/10.1137/040606314

High-Dimensional Finite Elements for Elliptic Problems with Multiple Scales

Viet Ha Hoang and Christoph Schwab
Multiscale Modeling & Simulation 3 (1) 168 (2005)
https://doi.org/10.1137/030601077

On A Priori Error Analysis of Fully Discrete Heterogeneous Multiscale FEM

Assyr Abdulle
Multiscale Modeling & Simulation 4 (2) 447 (2005)
https://doi.org/10.1137/040607137

A Posteriori Error Estimates for the Heterogeneous Multiscale Finite Element Method for Elliptic Homogenization Problems

Mario Ohlberger
Multiscale Modeling & Simulation 4 (1) 88 (2005)
https://doi.org/10.1137/040605229

Two-Scale Regularity for Homogenization Problems with Nonsmooth Fine Scale Geometry

A.-M. Matache and J. M. Melenk
Mathematical Models and Methods in Applied Sciences 13 (07) 1053 (2003)
https://doi.org/10.1142/S0218202503002817