Articles citing this article

The Citing articles tool gives a list of articles citing the current article.
The citing articles come from EDP Sciences database, as well as other publishers participating in CrossRef Cited-by Linking Program. You can set up your personal account to receive an email alert each time this article is cited by a new article (see the menu on the right-hand side of the abstract page).

Cited article:

A convergent finite-volume scheme for nonlocal cross-diffusion systems for multi-species populations

Ansgar Jüngel, Stefan Portisch and Antoine Zurek
ESAIM: Mathematical Modelling and Numerical Analysis 58 (2) 759 (2024)
https://doi.org/10.1051/m2an/2024016

Optimal L2 error estimates of stabilizer-free weak Galerkin finite element method for the drift-diffusion problem

Wenjuan Li, Yunxian Liu, Fuzheng Gao and Jintao Cui
Journal of Computational and Applied Mathematics 450 115983 (2024)
https://doi.org/10.1016/j.cam.2024.115983

Second-order, positive, and unconditional energy dissipative scheme for modified Poisson–Nernst–Planck equations

Jie Ding and Shenggao Zhou
Journal of Computational Physics 510 113094 (2024)
https://doi.org/10.1016/j.jcp.2024.113094

Acceleration of solving drift-diffusion equations enabled by estimation of initial value at nonequilibrium

Chunlin Du, Yu Zhang, Haolan Qu, Haowen Guo and Xinbo Zou
Networks and Heterogeneous Media 19 (1) 456 (2024)
https://doi.org/10.3934/nhm.2024020

A weak Galerkin finite element method for 1D semiconductor device simulation models

Wenjuan Li, Yunxian Liu, Fuzheng Gao and Jintao Cui
Journal of Computational and Applied Mathematics 438 115531 (2024)
https://doi.org/10.1016/j.cam.2023.115531

Structure Preserving Schemes for Fokker–Planck Equations of Irreversible Processes

Chen Liu, Yuan Gao and Xiangxiong Zhang
Journal of Scientific Computing 98 (1) (2024)
https://doi.org/10.1007/s10915-023-02378-0

A Convergent Entropy-Dissipating BDF2 Finite-Volume Scheme for a Population Cross-Diffusion System

Ansgar Jüngel and Martin Vetter
Computational Methods in Applied Mathematics 24 (3) 725 (2024)
https://doi.org/10.1515/cmam-2023-0009

A positivity-preserving, linear, energy stable and convergent numerical scheme for the Poisson–Nernst–Planck (PNP) system

Lixiu Dong, Dongdong He, Yuzhe Qin and Zhengru Zhang
Journal of Computational and Applied Mathematics 444 115784 (2024)
https://doi.org/10.1016/j.cam.2024.115784

Computational modeling of early-stage breast cancer progression using TPFA method: A numerical investigation

Manal Alotaibi, Françoise Foucher, Moustafa Ibrahim and Mazen Saad
Applied Numerical Mathematics 198 236 (2024)
https://doi.org/10.1016/j.apnum.2024.01.010

A discrete boundedness-by-entropy method for finite-volume approximations of cross-diffusion systems

Ansgar Jüngel and Antoine Zurek
IMA Journal of Numerical Analysis 43 (1) 560 (2023)
https://doi.org/10.1093/imanum/drab101

A physics-based strategy for choosing initial iterate for solving drift-diffusion equations

Xiaowei Jia, Hengbin An, Yi Hu and Zeyao Mo
Computers & Mathematics with Applications 131 1 (2023)
https://doi.org/10.1016/j.camwa.2022.11.029

A convergent finite volume scheme for dissipation driven models with volume filling constraint

Clément Cancès and Antoine Zurek
Numerische Mathematik 151 (1) 279 (2022)
https://doi.org/10.1007/s00211-022-01270-7

High-order Scharfetter-Gummel-based schemes and applications to gas discharge modeling

Tuan Dung Nguyen, Christophe Besse and François Rogier
Journal of Computational Physics 461 111196 (2022)
https://doi.org/10.1016/j.jcp.2022.111196

Convergence of a finite volume scheme for a parabolic system applied to image processing

Jamal Attmani, Abdelghafour Atlas and Fahd Karami
Moroccan Journal of Pure and Applied Analysis 8 (3) 401 (2022)
https://doi.org/10.2478/mjpaa-2022-0027

Entropy and convergence analysis for two finite volume schemes for a Nernst–Planck–Poisson system with ion volume constraints

Benoît Gaudeul and Jürgen Fuhrmann
Numerische Mathematik 151 (1) 99 (2022)
https://doi.org/10.1007/s00211-022-01279-y

The Scharfetter–Gummel scheme for aggregation–diffusion equations

André Schlichting and Christian Seis
IMA Journal of Numerical Analysis 42 (3) 2361 (2022)
https://doi.org/10.1093/imanum/drab039

Convergence of a finite-volume scheme for a degenerate-singular cross-diffusion system for biofilms

Esther S Daus, Ansgar Jüngel and Antoine Zurek
IMA Journal of Numerical Analysis 41 (2) 935 (2021)
https://doi.org/10.1093/imanum/draa040

A Convergent Structure-Preserving Finite-Volume Scheme for the Shigesada--Kawasaki--Teramoto Population System

Ansgar Jüngel and Antoine Zurek
SIAM Journal on Numerical Analysis 59 (4) 2286 (2021)
https://doi.org/10.1137/20M1381058

Computation of optimal transport with finite volumes

Andrea Natale and Gabriele Todeschi
ESAIM: Mathematical Modelling and Numerical Analysis 55 (5) 1847 (2021)
https://doi.org/10.1051/m2an/2021041

Parallel implementation of cellular automata model of electron-hole transport in a semiconductor

Karl K. Sabelfeld, Sergey Kireev and Anastasiya Kireeva
Journal of Parallel and Distributed Computing 158 186 (2021)
https://doi.org/10.1016/j.jpdc.2021.08.006

A numerical-analysis-focused comparison of several finite volume schemes for a unipolar degenerate drift-diffusion model

Clément Cancès, Claire Chainais-Hillairet, Jürgen Fuhrmann and Benoît Gaudeul
IMA Journal of Numerical Analysis 41 (1) 271 (2021)
https://doi.org/10.1093/imanum/draa002

Finite Volume approximation of a two-phase two fluxes degenerate Cahn–Hilliard model

Clément Cancès and Flore Nabet
ESAIM: Mathematical Modelling and Numerical Analysis 55 (3) 969 (2021)
https://doi.org/10.1051/m2an/2021002

Upstream mobility finite volumes for the Richards equation in heterogenous domains

Sabrina Bassetto, Clément Cancès, Guillaume Enchéry and Quang-Huy Tran
ESAIM: Mathematical Modelling and Numerical Analysis 55 (5) 2101 (2021)
https://doi.org/10.1051/m2an/2021047

A variational finite volume scheme for Wasserstein gradient flows

Clément Cancès, Thomas O. Gallouët and Gabriele Todeschi
Numerische Mathematik 146 (3) 437 (2020)
https://doi.org/10.1007/s00211-020-01153-9

A Convergent Entropy Diminishing Finite Volume Scheme for a Cross-Diffusion System

Clément Cancès and Benoît Gaudeul
SIAM Journal on Numerical Analysis 58 (5) 2684 (2020)
https://doi.org/10.1137/20M1316093

Parallel Computational Technologies

Karl K. Sabelfeld and Anastasiya Kireeva
Communications in Computer and Information Science, Parallel Computational Technologies 1263 251 (2020)
https://doi.org/10.1007/978-3-030-55326-5_18

Linearized Implicit Methods Based on a Single-Layer Neural Network: Application to Keller–Segel Models

M. Benzakour Amine
Journal of Scientific Computing 85 (1) (2020)
https://doi.org/10.1007/s10915-020-01310-0

Finite Volumes for Complex Applications IX - Methods, Theoretical Aspects, Examples

Ansgar Jüngel and Antoine Zurek
Springer Proceedings in Mathematics & Statistics, Finite Volumes for Complex Applications IX - Methods, Theoretical Aspects, Examples 323 223 (2020)
https://doi.org/10.1007/978-3-030-43651-3_19

Finite‐volume scheme for a degenerate cross‐diffusion model motivated from ion transport

Clément Cancès, Claire Chainais‐Hillairet, Anita Gerstenmayer and Ansgar Jüngel
Numerical Methods for Partial Differential Equations 35 (2) 545 (2019)
https://doi.org/10.1002/num.22313

An HDG Method for the Time-dependent Drift–Diffusion Model of Semiconductor Devices

Gang Chen, Peter Monk and Yangwen Zhang
Journal of Scientific Computing 80 (1) 420 (2019)
https://doi.org/10.1007/s10915-019-00945-y

A Positivity Preserving and Free Energy Dissipative Difference Scheme for the Poisson–Nernst–Planck System

Dongdong He, Kejia Pan and Xiaoqiang Yue
Journal of Scientific Computing 81 (1) 436 (2019)
https://doi.org/10.1007/s10915-019-01025-x

Uniform-in-time bounds for approximate solutions of the drift–diffusion system

M. Bessemoulin-Chatard and C. Chainais-Hillairet
Numerische Mathematik 141 (4) 881 (2019)
https://doi.org/10.1007/s00211-018-01019-1

Handbook of Optoelectronic Device Modeling and Simulation

Series in Optics and Optoelectronics, Handbook of Optoelectronic Device Modeling and Simulation 733 (2017)
https://doi.org/10.1201/9781315152318-31

A free energy satisfying discontinuous Galerkin method for one-dimensional Poisson–Nernst–Planck systems

Hailiang Liu and Zhongming Wang
Journal of Computational Physics 328 413 (2017)
https://doi.org/10.1016/j.jcp.2016.10.008

A finite volume scheme for boundary-driven convection–diffusion equations with relative entropy structure

Francis Filbet and Maxime Herda
Numerische Mathematik 137 (3) 535 (2017)
https://doi.org/10.1007/s00211-017-0885-7

An energy preserving finite difference scheme for the Poisson–Nernst–Planck system

Dongdong He and Kejia Pan
Applied Mathematics and Computation 287-288 214 (2016)
https://doi.org/10.1016/j.amc.2016.05.007

Convergence of an implicit Voronoi finite volume method for reaction–diffusion problems

André Fiebach, Annegret Glitzky and Alexander Linke
Numerical Methods for Partial Differential Equations 32 (1) 141 (2016)
https://doi.org/10.1002/num.21990

On the existence of solutions for a drift-diffusion system arising in corrosion modeling

Claire Chainais-Hillairet and Ingrid Lacroix-Violet
Discrete & Continuous Dynamical Systems - B 20 (1) 77 (2015)
https://doi.org/10.3934/dcdsb.2015.20.77

Relaxation-time limit in the multi-dimensional bipolar nonisentropic Euler–Poisson systems

Yeping Li and Zhiming Zhou
Journal of Differential Equations 258 (10) 3546 (2015)
https://doi.org/10.1016/j.jde.2015.01.020

Finite Volumes for Complex Applications VII-Methods and Theoretical Aspects

Claire Chainais-Hillairet
Springer Proceedings in Mathematics & Statistics, Finite Volumes for Complex Applications VII-Methods and Theoretical Aspects 77 17 (2014)
https://doi.org/10.1007/978-3-319-05684-5_2

CONVERGENCE OF A FINITE VOLUME SCHEME FOR GAS–WATER FLOW IN A MULTI-DIMENSIONAL POROUS MEDIUM

MOSTAFA BENDAHMANE, ZIAD KHALIL and MAZEN SAAD
Mathematical Models and Methods in Applied Sciences 24 (01) 145 (2014)
https://doi.org/10.1142/S0218202513500498

Study of a Finite Volume Scheme for the Drift-Diffusion System. Asymptotic Behavior in the Quasi-Neutral Limit

M. Bessemoulin-Chatard, C. Chainais-Hillairet and M.-H. Vignal
SIAM Journal on Numerical Analysis 52 (4) 1666 (2014)
https://doi.org/10.1137/130913432

Analysis of a finite volume method for a bone growth system in vivo

Yves Coudière, Mazen Saad and Alexandre Uzureau
Computers & Mathematics with Applications 66 (9) 1581 (2013)
https://doi.org/10.1016/j.camwa.2013.02.002

A Finite Volume Scheme for Nonlinear Degenerate Parabolic Equations

Marianne Bessemoulin-Chatard and Francis Filbet
SIAM Journal on Scientific Computing 34 (5) B559 (2012)
https://doi.org/10.1137/110853807

A finite volume scheme for convection–diffusion equations with nonlinear diffusion derived from the Scharfetter–Gummel scheme

Marianne Bessemoulin-Chatard
Numerische Mathematik 121 (4) 637 (2012)
https://doi.org/10.1007/s00211-012-0448-x

Finite Volumes for Complex Applications VI Problems & Perspectives

Chainais-Hillairet Claire and Vignal Marie-Hélène
Springer Proceedings in Mathematics, Finite Volumes for Complex Applications VI Problems & Perspectives 4 205 (2011)
https://doi.org/10.1007/978-3-642-20671-9_22

Finite volume methods for degenerate chemotaxis model

Boris Andreianov, Mostafa Bendahmane and Mazen Saad
Journal of Computational and Applied Mathematics 235 (14) 4015 (2011)
https://doi.org/10.1016/j.cam.2011.02.023

Finite Volumes for Complex Applications VI Problems & Perspectives

Marianne Chatard
Springer Proceedings in Mathematics, Finite Volumes for Complex Applications VI Problems & Perspectives 4 235 (2011)
https://doi.org/10.1007/978-3-642-20671-9_25

Construction and Convergence Study of Schemes Preserving the Elliptic Local Maximum Principle

Jérôme Droniou and Christophe Le Potier
SIAM Journal on Numerical Analysis 49 (2) 459 (2011)
https://doi.org/10.1137/090770849

A finite-volume scheme for the multidimensional quantum drift-diffusion model for semiconductors

Claire Chainais-Hillairet, Marguerite Gisclon and Ansgar Jüngel
Numerical Methods for Partial Differential Equations 27 (6) 1483 (2011)
https://doi.org/10.1002/num.20592

A NUMERICAL ANALYSIS OF A REACTION–DIFFUSION SYSTEM MODELING THE DYNAMICS OF GROWTH TUMORS

VERÓNICA ANAYA, MOSTAFA BENDAHMANE and MAURICIO SEPÚLVEDA
Mathematical Models and Methods in Applied Sciences 20 (05) 731 (2010)
https://doi.org/10.1142/S0218202510004428

Numerical solutions of Euler–Poisson systems for potential flows

Claire Chainais-Hillairet, Yue-Jue Peng and Ingrid Violet
Applied Numerical Mathematics 59 (2) 301 (2009)
https://doi.org/10.1016/j.apnum.2008.02.006

Convergence of a finite volume scheme for the bidomain model of cardiac tissue

Mostafa Bendahmane and Kenneth H. Karlsen
Applied Numerical Mathematics 59 (9) 2266 (2009)
https://doi.org/10.1016/j.apnum.2008.12.016

FINITE VOLUME APPROXIMATION FOR DEGENERATE DRIFT-DIFFUSION SYSTEM IN SEVERAL SPACE DIMENSIONS

CLAIRE CHAINAIS-HILLAIRET and YUE-JUN PENG
Mathematical Models and Methods in Applied Sciences 14 (03) 461 (2004)
https://doi.org/10.1142/S0218202504003313