The Citing articles tool gives a list of articles citing the current article. The citing articles come from EDP Sciences database, as well as other publishers participating in CrossRef Cited-by Linking Program. You can set up your personal account to receive an email alert each time this article is cited by a new article (see the menu on the right-hand side of the abstract page).
Singular Limits in Thermodynamics of Viscous Fluids
Eduard Feireisl and Antonín Novotný Advances in Mathematical Fluid Mechanics, Singular Limits in Thermodynamics of Viscous Fluids 313 (2017) https://doi.org/10.1007/978-3-319-63781-5_8
Singular Limits in Thermodynamics of Viscous Fluids
Eduard Feireisl and Antonín Novotný Advances in Mathematical Fluid Mechanics, Singular Limits in Thermodynamics of Viscous Fluids 1 (2017) https://doi.org/10.1007/978-3-319-63781-5_1
Singular Limits in Thermodynamics of Viscous Fluids
Eduard Feireisl and Antonín Novotný Advances in Mathematical Fluid Mechanics, Singular Limits in Thermodynamics of Viscous Fluids 21 (2017) https://doi.org/10.1007/978-3-319-63781-5_2
Singular Limits in Thermodynamics of Viscous Fluids
Eduard Feireisl and Antonín Novotný Advances in Mathematical Fluid Mechanics, Singular Limits in Thermodynamics of Viscous Fluids 49 (2017) https://doi.org/10.1007/978-3-319-63781-5_3
Singular Limits in Thermodynamics of Viscous Fluids
Eduard Feireisl and Antonín Novotný Advances in Mathematical Fluid Mechanics, Singular Limits in Thermodynamics of Viscous Fluids 145 (2017) https://doi.org/10.1007/978-3-319-63781-5_4
Singular Limits in Thermodynamics of Viscous Fluids
Eduard Feireisl and Antonín Novotný Advances in Mathematical Fluid Mechanics, Singular Limits in Thermodynamics of Viscous Fluids 167 (2017) https://doi.org/10.1007/978-3-319-63781-5_5
Singular Limits in Thermodynamics of Viscous Fluids
Eduard Feireisl and Antonín Novotný Advances in Mathematical Fluid Mechanics, Singular Limits in Thermodynamics of Viscous Fluids 221 (2017) https://doi.org/10.1007/978-3-319-63781-5_6
Singular Limits in Thermodynamics of Viscous Fluids
Eduard Feireisl and Antonín Novotný Advances in Mathematical Fluid Mechanics, Singular Limits in Thermodynamics of Viscous Fluids 263 (2017) https://doi.org/10.1007/978-3-319-63781-5_7
Singular Limits in Thermodynamics of Viscous Fluids
Eduard Feireisl and Antonín Novotný Advances in Mathematical Fluid Mechanics, Singular Limits in Thermodynamics of Viscous Fluids 369 (2017) https://doi.org/10.1007/978-3-319-63781-5_9
Singular Limits in Thermodynamics of Viscous Fluids
Eduard Feireisl and Antonín Novotný Advances in Mathematical Fluid Mechanics, Singular Limits in Thermodynamics of Viscous Fluids 429 (2017) https://doi.org/10.1007/978-3-319-63781-5_11
Singular Limits in Thermodynamics of Viscous Fluids
Eduard Feireisl and Antonín Novotný Advances in Mathematical Fluid Mechanics, Singular Limits in Thermodynamics of Viscous Fluids 501 (2017) https://doi.org/10.1007/978-3-319-63781-5_12
Singular Limits in Thermodynamics of Viscous Fluids
Eduard Feireisl and Antonín Novotný Advances in Mathematical Fluid Mechanics, Singular Limits in Thermodynamics of Viscous Fluids 409 (2017) https://doi.org/10.1007/978-3-319-63781-5_10
Handbook of Mathematical Analysis in Mechanics of Viscous Fluids
Global existence and the low Mach number limit for the compressible magnetohydrodynamic equations in a bounded domain with perfectly conducting boundary
Anelastic Approximation as a Singular Limit of the Compressible Navier–Stokes System
Eduard Feireisl, Josef Málek, Antonín Novotný and Ivan Straškraba Communications in Partial Differential Equations 33(1) 157 (2008) https://doi.org/10.1080/03605300601088799
Handbook of Differential Equations: Evolutionary Equations
ON THE INCOMPRESSIBLE LIMIT FOR THE NAVIER–STOKES–FOURIER SYSTEM IN DOMAINS WITH WAVY BOTTOMS
EDUARD FEIREISL, ANTONÍN NOVOTNÝ and HANA PETZELTOVÁ Mathematical Models and Methods in Applied Sciences 18(02) 291 (2008) https://doi.org/10.1142/S0218202508002681
Асимптотический анализ полной системы Навье - Стокса - Фурье: от течений сжимаемой к течениям несжимаемой жидкости