Articles citing this article

The Citing articles tool gives a list of articles citing the current article.
The citing articles come from EDP Sciences database, as well as other publishers participating in CrossRef Cited-by Linking Program. You can set up your personal account to receive an email alert each time this article is cited by a new article (see the menu on the right-hand side of the abstract page).

Cited article:

Analysis of a $$\varvec{P}_1\oplus \varvec{RT}_0$$ finite element method for linear elasticity with Dirichlet and mixed boundary conditions

Hongpeng Li, Xu Li and Hongxing Rui
Advances in Computational Mathematics 50 (1) (2024)
https://doi.org/10.1007/s10444-024-10107-w

Spectral Analysis of a Mixed Method for Linear Elasticity

Xiang Zhong and Weifeng Qiu
SIAM Journal on Numerical Analysis 61 (4) 1885 (2023)
https://doi.org/10.1137/22M148611X

Numerical analysis of a stabilized scheme applied to incompressible elasticity problems with Dirichlet and with mixed boundary conditions

Tomás P. Barrios, Edwin M. Behrens and Rommel Bustinza
Advances in Computational Mathematics 48 (4) (2022)
https://doi.org/10.1007/s10444-022-09956-0

New primal and dual-mixed finite element methods for stable image registration with singular regularization

Nicolás Barnafi, Gabriel N. Gatica, Daniel E. Hurtado, Willian Miranda and Ricardo Ruiz-Baier
Mathematical Models and Methods in Applied Sciences 31 (05) 979 (2021)
https://doi.org/10.1142/S021820252150024X

Stabilization and a posteriori error analysis of a mixed FEM for convection–diffusion problems with mixed boundary conditions

María González and Magdalena Strugaru
Journal of Computational and Applied Mathematics 381 113015 (2021)
https://doi.org/10.1016/j.cam.2020.113015

Ultra-weak symmetry of stress for augmented mixed finite element formulations in continuum mechanics

Javier A. Almonacid, Gabriel N. Gatica and Ricardo Ruiz-Baier
Calcolo 57 (1) (2020)
https://doi.org/10.1007/s10092-019-0351-2

A Banach spaces-based analysis of a new mixed-primal finite element method for a coupled flow-transport problem

Gonzalo A. Benavides, Sergio Caucao, Gabriel N. Gatica and Alejandro A. Hopper
Computer Methods in Applied Mechanics and Engineering 371 113285 (2020)
https://doi.org/10.1016/j.cma.2020.113285

Analysis of a Galerkin scheme to avoid the locking phenomenon: solid-fluid interaction problem

A Vásquez-Coronel, E Salazar-Jurado, L Cuesta-Herrera and A Altamirano-Fernández
Journal of Physics: Conference Series 1671 (1) 012001 (2020)
https://doi.org/10.1088/1742-6596/1671/1/012001

A mixed virtual element method for a pseudostress-based formulation of linear elasticity

Ernesto Cáceres, Gabriel N. Gatica and Filánder A. Sequeira
Applied Numerical Mathematics 135 423 (2019)
https://doi.org/10.1016/j.apnum.2018.09.003

New a posteriori error estimator for an stabilized mixed method applied to incompressible fluid flows

Tomás P. Barrios, Edwin M. Behrens and María González
Applied Mathematics and Computation 351 37 (2019)
https://doi.org/10.1016/j.amc.2019.01.020

Mixed displacement–rotation–pressure formulations for linear elasticity

Verónica Anaya, Zoa de Wijn, David Mora and Ricardo Ruiz-Baier
Computer Methods in Applied Mechanics and Engineering 344 71 (2019)
https://doi.org/10.1016/j.cma.2018.09.029

Robust a posteriori error estimators for mixed approximation of nearly incompressible elasticity

Arbaz Khan, Catherine E. Powell and David J. Silvester
International Journal for Numerical Methods in Engineering 119 (1) 18 (2019)
https://doi.org/10.1002/nme.6040

New Mixed Finite Element Methods for Natural Convection with Phase-Change in Porous Media

Mario Alvarez, Gabriel N. Gatica, Bryan Gomez-Vargas and Ricardo Ruiz-Baier
Journal of Scientific Computing 80 (1) 141 (2019)
https://doi.org/10.1007/s10915-019-00931-4

A conforming primal–dual mixed formulation for the 2D multiscale porous media flow problem

Fernando A. Morales
Computational and Applied Mathematics 38 (2) (2019)
https://doi.org/10.1007/s40314-019-0808-6

Analysis and mixed-primal finite element discretisations for stress-assisted diffusion problems

Gabriel N. Gatica, Bryan Gomez-Vargas and Ricardo Ruiz-Baier
Computer Methods in Applied Mechanics and Engineering 337 411 (2018)
https://doi.org/10.1016/j.cma.2018.03.043

A priori and a posteriori error analysis of an augmented mixed-FEM for the Navier–Stokes–Brinkman problem

Luis F. Gatica, Ricardo Oyarzúa and Nestor Sánchez
Computers & Mathematics with Applications 75 (7) 2420 (2018)
https://doi.org/10.1016/j.camwa.2017.12.029

Error analysis of an augmented mixed method for the Navier–Stokes problem with mixed boundary conditions

Jessika Camaño, Ricardo Oyarzúa, Ricardo Ruiz-Baier and Giordano Tierra
IMA Journal of Numerical Analysis 38 (3) 1452 (2018)
https://doi.org/10.1093/imanum/drx039

Primal and Mixed Finite Element Methods for Deformable Image Registration Problems

Nicolás Barnafi, Gabriel N. Gatica and Daniel E. Hurtado
SIAM Journal on Imaging Sciences 11 (4) 2529 (2018)
https://doi.org/10.1137/17M115219X

The stabilized mixed finite element scheme of elasticity problem

Ming-hao Li, Dong-yang Shi and Zhen-zhen Li
Computational and Applied Mathematics 37 (3) 2588 (2018)
https://doi.org/10.1007/s40314-017-0466-5

Augmented mixed finite element method for the Oseen problem: A priori and a posteriori error analyses

Tomás P. Barrios, J. Manuel Cascón and María González
Computer Methods in Applied Mechanics and Engineering 313 216 (2017)
https://doi.org/10.1016/j.cma.2016.09.012

A New Mixed Finite Element Method for Elastodynamics with Weak Symmetry

Carlos García, Gabriel N. Gatica and Salim Meddahi
Journal of Scientific Computing 72 (3) 1049 (2017)
https://doi.org/10.1007/s10915-017-0384-0

A priorianda posteriorierror analysis of a pseudostress-based mixed formulation of the Stokes problem with varying density

Sergio Caucao, David Mora and Ricardo Oyarzúa
IMA Journal of Numerical Analysis 36 (2) 947 (2016)
https://doi.org/10.1093/imanum/drv015

A residual-based a posteriori error estimator for the plane linear elasticity problem with pure traction boundary conditions

Carolina Domínguez, Gabriel N. Gatica and Antonio Márquez
Journal of Computational and Applied Mathematics 292 486 (2016)
https://doi.org/10.1016/j.cam.2015.07.020

A mixed-primal finite element approximation of a sedimentation–consolidation system

Mario Alvarez, Gabriel N. Gatica and Ricardo Ruiz-Baier
Mathematical Models and Methods in Applied Sciences 26 (05) 867 (2016)
https://doi.org/10.1142/S0218202516500202

An Augmented Mixed Finite Element Method for the Navier--Stokes Equations with Variable Viscosity

Jessika Caman͂o, Gabriel N. Gatica, Ricardo Oyarzúa and Giordano Tierra
SIAM Journal on Numerical Analysis 54 (2) 1069 (2016)
https://doi.org/10.1137/15M1013146

Analysis of an augmented mixed‐primal formulation for the stationary Boussinesq problem

Eligio Colmenares, Gabriel N. Gatica and Ricardo Oyarzúa
Numerical Methods for Partial Differential Equations 32 (2) 445 (2016)
https://doi.org/10.1002/num.22001

A priori and a posteriori error analyses of a pseudostress-based mixed formulation for linear elasticity

Gabriel N. Gatica, Luis F. Gatica and Filánder A. Sequeira
Computers & Mathematics with Applications 71 (2) 585 (2016)
https://doi.org/10.1016/j.camwa.2015.12.009

Analysis of an augmented pseudostress-based mixed formulation for a nonlinear Brinkman model of porous media flow

Gabriel N. Gatica, Luis F. Gatica and Filánder A. Sequeira
Computer Methods in Applied Mechanics and Engineering 289 104 (2015)
https://doi.org/10.1016/j.cma.2015.01.019

An augmented mixed-primal finite element method for a coupled flow-transport problem

Mario Alvarez, Gabriel N. Gatica and Ricardo Ruiz–Baier
ESAIM: Mathematical Modelling and Numerical Analysis 49 (5) 1399 (2015)
https://doi.org/10.1051/m2an/2015015

An augmented velocity-vorticity-pressure formulation for the Brinkman equations

Verónica Anaya, Gabriel N. Gatica, David Mora and Ricardo Ruiz-Baier
International Journal for Numerical Methods in Fluids 79 (3) 109 (2015)
https://doi.org/10.1002/fld.4041

ARTk−Pkapproximation for linear elasticity yielding a brokenH(div)convergent postprocessed stress

Gabriel N. Gatica, Luis F. Gatica and Filánder A. Sequeira
Applied Mathematics Letters 49 133 (2015)
https://doi.org/10.1016/j.aml.2015.05.009

New fully-mixed finite element methods for the Stokes–Darcy coupling

Jessika Camaño, Gabriel N. Gatica, Ricardo Oyarzúa, Ricardo Ruiz-Baier and Pablo Venegas
Computer Methods in Applied Mechanics and Engineering 295 362 (2015)
https://doi.org/10.1016/j.cma.2015.07.007

A Simple Introduction to the Mixed Finite Element Method

Gabriel N. Gatica
SpringerBriefs in Mathematics, A Simple Introduction to the Mixed Finite Element Method 1 (2014)
https://doi.org/10.1007/978-3-319-03695-3_1

A Simple Introduction to the Mixed Finite Element Method

Gabriel N. Gatica
SpringerBriefs in Mathematics, A Simple Introduction to the Mixed Finite Element Method 27 (2014)
https://doi.org/10.1007/978-3-319-03695-3_2

Analysis of a pseudostress-based mixed finite element method for the Brinkman model of porous media flow

Gabriel N. Gatica, Luis F. Gatica and Antonio Márquez
Numerische Mathematik 126 (4) 635 (2014)
https://doi.org/10.1007/s00211-013-0577-x

A Simple Introduction to the Mixed Finite Element Method

Gabriel N. Gatica
SpringerBriefs in Mathematics, A Simple Introduction to the Mixed Finite Element Method 93 (2014)
https://doi.org/10.1007/978-3-319-03695-3_4

A Simple Introduction to the Mixed Finite Element Method

Gabriel N. Gatica
SpringerBriefs in Mathematics, A Simple Introduction to the Mixed Finite Element Method 61 (2014)
https://doi.org/10.1007/978-3-319-03695-3_3

Low cost a posteriori error estimators for an augmented mixed FEM in linear elasticity

Tomás P. Barrios, Edwin M. Behrens and María González
Applied Numerical Mathematics 84 46 (2014)
https://doi.org/10.1016/j.apnum.2014.05.008

Finite element analysis for a pressure–stress formulation of a fluid–structure interaction spectral problem

Salim Meddahi, David Mora and Rodolfo Rodríguez
Computers & Mathematics with Applications 68 (12) 1733 (2014)
https://doi.org/10.1016/j.camwa.2014.10.016

A priori and a posteriori error analyses of augmented twofold saddle point formulations for nonlinear elasticity problems

Gabriel N. Gatica, Antonio Márquez and Walter Rudolph
Computer Methods in Applied Mechanics and Engineering 264 23 (2013)
https://doi.org/10.1016/j.cma.2013.05.010

An augmented mixed finite element method for the vorticity–velocity–pressure formulation of the Stokes equations

Verónica Anaya, David Mora and Ricardo Ruiz-Baier
Computer Methods in Applied Mechanics and Engineering 267 261 (2013)
https://doi.org/10.1016/j.cma.2013.08.011

Finite Element Spectral Analysis for the Mixed Formulation of the Elasticity Equations

Salim Meddahi, David Mora and Rodolfo Rodríguez
SIAM Journal on Numerical Analysis 51 (2) 1041 (2013)
https://doi.org/10.1137/120863010

On stabilized mixed methods for generalized Stokes problem based on the velocity–pseudostress formulation: A priori error estimates

Tomás P. Barrios, Rommel Bustinza, Galina C. García and Erwin Hernández
Computer Methods in Applied Mechanics and Engineering 237-240 78 (2012)
https://doi.org/10.1016/j.cma.2012.05.006

Pseudostress-Based Mixed Finite Element Methods for the Stokes Problem in ℝnwith Dirichlet Boundary Conditions. I: A Priori Error Analysis

Gabriel N. Gatica, Antonio Márquez and Manuel A. Sánchez
Communications in Computational Physics 12 (1) 109 (2012)
https://doi.org/10.4208/cicp.010311.041011a

Analysis of the Coupling of Lagrange and Arnold--Falk--Winther Finite Elements for a Fluid-Solid Interaction Problem in Three Dimensions

Gabriel N. Gatica, Antonio Márquez and Salim Meddahi
SIAM Journal on Numerical Analysis 50 (3) 1648 (2012)
https://doi.org/10.1137/110836705

A priori and a posteriori error analyses of a velocity-pseudostress formulation for a class of quasi-Newtonian Stokes flows

Gabriel N. Gatica, Antonio Márquez and Manuel A. Sánchez
Computer Methods in Applied Mechanics and Engineering 200 (17-20) 1619 (2011)
https://doi.org/10.1016/j.cma.2011.01.010

Augmented mixed finite element methods for a vorticity‐based velocity–pressure–stress formulation of the Stokes problem in 2D

Gabriel N. Gatica, Luis F. Gatica and Antonio Márquez
International Journal for Numerical Methods in Fluids 67 (4) 450 (2011)
https://doi.org/10.1002/fld.2362

A posteriori error analysis of an augmented mixed formulation in linear elasticity with mixed and Dirichlet boundary conditions

Tomás P. Barrios, Edwin M. Behrens and Marı´a González
Computer Methods in Applied Mechanics and Engineering 200 (1-4) 101 (2011)
https://doi.org/10.1016/j.cma.2010.07.016

Approximation of generalized Stokes problems using dual‐mixed finite elements without enrichment

Jason S. Howell
International Journal for Numerical Methods in Fluids 67 (2) 247 (2011)
https://doi.org/10.1002/fld.2356

Analysis of a velocity–pressure–pseudostress formulation for the stationary Stokes equations

Gabriel N. Gatica, Antonio Márquez and Manuel A. Sánchez
Computer Methods in Applied Mechanics and Engineering 199 (17-20) 1064 (2010)
https://doi.org/10.1016/j.cma.2009.11.024

Augmented Mixed Finite Element Methods for the Stationary Stokes Equations

Leonardo E. Figueroa, Gabriel N. Gatica and Antonio Márquez
SIAM Journal on Scientific Computing 31 (2) 1082 (2009)
https://doi.org/10.1137/080713069

Finite Element Approximation of the Three-Field Formulation of the Stokes Problem Using Arbitrary Interpolations

Ramon Codina
SIAM Journal on Numerical Analysis 47 (1) 699 (2009)
https://doi.org/10.1137/080712726

An augmented mixed finite element method for 3D linear elasticity problems

Gabriel N. Gatica, Antonio Márquez and Salim Meddahi
Journal of Computational and Applied Mathematics 231 (2) 526 (2009)
https://doi.org/10.1016/j.cam.2009.03.018

A new dual-mixed finite element method for the plane linear elasticity problem with pure traction boundary conditions

Gabriel N. Gatica, Antonio Márquez and Salim Meddahi
Computer Methods in Applied Mechanics and Engineering 197 (9-12) 1115 (2008)
https://doi.org/10.1016/j.cma.2007.10.003

A priori and a posteriori error analysis of an augmented mixed finite element method for incompressible fluid flows

Leonardo E. Figueroa, Gabriel N. Gatica and Norbert Heuer
Computer Methods in Applied Mechanics and Engineering 198 (2) 280 (2008)
https://doi.org/10.1016/j.cma.2008.07.018

Approximating second‐order vector differential operators on distorted meshes in two space dimensions

F. Hermeline
International Journal for Numerical Methods in Engineering 76 (7) 1065 (2008)
https://doi.org/10.1002/nme.2356

An augmented mixed finite element method with Lagrange multipliers: A priori and a posteriori error analyses

Tomás P. Barrios and Gabriel N. Gatica
Journal of Computational and Applied Mathematics 200 (2) 653 (2007)
https://doi.org/10.1016/j.cam.2006.01.017

Analysis of the Coupling of Primal and Dual-Mixed Finite Element Methods for a Two-Dimensional Fluid-Solid Interaction Problem

Gabriel N. Gatica, Antonio Márquez and Salim Meddahi
SIAM Journal on Numerical Analysis 45 (5) 2072 (2007)
https://doi.org/10.1137/060660370

A residual basedA POSTERIORIerror estimator for an augmented mixed finite element method in linear elasticity

Tomás P. Barrios, Gabriel N. Gatica, María González and Norbert Heuer
ESAIM: Mathematical Modelling and Numerical Analysis 40 (5) 843 (2006)
https://doi.org/10.1051/m2an:2006036