Articles citing this article

The Citing articles tool gives a list of articles citing the current article.
The citing articles come from EDP Sciences database, as well as other publishers participating in CrossRef Cited-by Linking Program. You can set up your personal account to receive an email alert each time this article is cited by a new article (see the menu on the right-hand side of the abstract page).

Cited article:

Rigorous derivation of the degenerate parabolic-elliptic Keller-Segel system from a moderately interacting stochastic particle system. Part I Partial differential equation

Li Chen, Veniamin Gvozdik and Yue Li
Journal of Differential Equations 375 567 (2023)
https://doi.org/10.1016/j.jde.2023.08.019

Asymptotics of Chemotaxis Systems with Fractional Dissipation for Small Data in Critical Sobolev Space

Jaewook Ahn and Jihoon Lee
Acta Applicandae Mathematicae 169 (1) 199 (2020)
https://doi.org/10.1007/s10440-019-00296-8

Boundary layer analysis from the Keller-Segel system to the aggregation system in one space dimension

Jiahang Che, Li Chen, Simone GÖttlich, Anamika Pandey and Jing Wang
Communications on Pure & Applied Analysis 16 (3) 1013 (2017)
https://doi.org/10.3934/cpaa.2017049

Asymptotic expansion of solutions to the nonlinear dissipative equation with the anomalous diffusion

Masakazu Yamamoto
Journal of Mathematical Analysis and Applications 427 (2) 1027 (2015)
https://doi.org/10.1016/j.jmaa.2015.02.025

Parabolic elliptic type Keller-Segel system on the whole space case

Liang Hong, Li Chen and Jinhuan Wang
Discrete and Continuous Dynamical Systems 36 (2) 1061 (2015)
https://doi.org/10.3934/dcds.2016.36.1061

Exponential convergence to equilibrium in a coupled gradient flow system modeling chemotaxis

Jonathan Zinsl and Daniel Matthes
Analysis & PDE 8 (2) 425 (2015)
https://doi.org/10.2140/apde.2015.8.425

Large Mass Global Solutions for a Class ofL1-Critical Nonlocal Aggregation Equations and Parabolic-Elliptic Patlak-Keller-Segel Models

Jacob Bedrossian
Communications in Partial Differential Equations 40 (6) 1119 (2015)
https://doi.org/10.1080/03605302.2014.999938

Inhomogeneous Patlak-Keller-Segel models and aggregation equations with nonlinear diffusion in $\mathbb{R}^d$

Jacob Bedrossian and Nancy Rodríguez
Discrete & Continuous Dynamical Systems - B 19 (5) 1279 (2014)
https://doi.org/10.3934/dcdsb.2014.19.1279

Multidimensional Degenerate Keller–Segel System with Critical Diffusion Exponent $2n/(n+2)$

Li Chen, Jian-Guo Liu and Jinhuan Wang
SIAM Journal on Mathematical Analysis 44 (2) 1077 (2012)
https://doi.org/10.1137/110839102

The Patlak–Keller–Segel Model and Its Variations: Properties of Solutions via Maximum Principle

Inwon Kim and Yao Yao
SIAM Journal on Mathematical Analysis 44 (2) 568 (2012)
https://doi.org/10.1137/110823584

Extinction, decay and blow-up for Keller–Segel systems of fast diffusion type

Yoshie Sugiyama and Yumi Yahagi
Journal of Differential Equations 250 (7) 3047 (2011)
https://doi.org/10.1016/j.jde.2011.01.016

Nonlinear Patterns in Urban Crime: Hotspots, Bifurcations, and Suppression

M. B. Short, A. L. Bertozzi and P. J. Brantingham
SIAM Journal on Applied Dynamical Systems 9 (2) 462 (2010)
https://doi.org/10.1137/090759069

STATISTICAL MODELS OF CRIMINAL BEHAVIOR: THE EFFECTS OF LAW ENFORCEMENT ACTIONS

PAUL A. JONES, P. JEFFREY BRANTINGHAM and LINCOLN R. CHAYES
Mathematical Models and Methods in Applied Sciences 20 (supp01) 1397 (2010)
https://doi.org/10.1142/S0218202510004647

Global strong solution to the semi-linear Keller–Segel system of parabolic–parabolic type with small data in scale invariant spaces

Hideo Kozono and Yoshie Sugiyama
Journal of Differential Equations 247 (1) 1 (2009)
https://doi.org/10.1016/j.jde.2009.03.027

A STATISTICAL MODEL OF CRIMINAL BEHAVIOR

M. B. SHORT, M. R. D'ORSOGNA, V. B. PASOUR, G. E. TITA, P. J. BRANTINGHAM, A. L. BERTOZZI and L. B. CHAYES
Mathematical Models and Methods in Applied Sciences 18 (supp01) 1249 (2008)
https://doi.org/10.1142/S0218202508003029

Large time behavior of bounded solutions to a parabolic system of chemotaxis in the whole space

Toshitaka Nagai and Tetsuya Yamada
Journal of Mathematical Analysis and Applications 336 (1) 704 (2007)
https://doi.org/10.1016/j.jmaa.2007.03.014

Global existence and decay properties for a degenerate Keller–Segel model with a power factor in drift term

Yoshie Sugiyama and Hiroko Kunii
Journal of Differential Equations 227 (1) 333 (2006)
https://doi.org/10.1016/j.jde.2006.03.003