Articles citing this article

The Citing articles tool gives a list of articles citing the current article.
The citing articles come from EDP Sciences database, as well as other publishers participating in CrossRef Cited-by Linking Program. You can set up your personal account to receive an email alert each time this article is cited by a new article (see the menu on the right-hand side of the abstract page).

Cited article:

Quadratic Discontinuous Galerkin Finite Element Methods for the Unilateral Contact Problem

Kamana Porwal and Tanvi Wadhawan
Computational Methods in Applied Mathematics 25 (1) 189 (2025)
https://doi.org/10.1515/cmam-2023-0015

Adaptive isogeometric gear contact analysis: Geometry generation, truncated hierarchical B-Spline refinement and validation

Christos Karampatzakis, Angelos Mantzaflaris, Christopher Provatidis and Athanassios Mihailidis
Computers & Structures 305 107553 (2024)
https://doi.org/10.1016/j.compstruc.2024.107553

Adaptive Quadratic Finite Element Method for the Unilateral Contact Problem

Rohit Khandelwal, Kamana Porwal and Tanvi Wadhawan
Journal of Scientific Computing 96 (1) (2023)
https://doi.org/10.1007/s10915-023-02206-5

Unified analysis of discontinuous Galerkin methods for frictional contact problem with normal compliance

Kamana Porwal and Tanvi Wadhawan
Journal of Computational and Applied Mathematics 434 115350 (2023)
https://doi.org/10.1016/j.cam.2023.115350

Mesh adaptivity for quasi‐static phase‐field fractures based on a residual‐type a posteriori error estimator

K. Mang, M. Walloth, T. Wick and W. Wollner
GAMM-Mitteilungen 43 (1) (2020)
https://doi.org/10.1002/gamm.202000003

Residual-type a posteriori error estimator for a quasi-static Signorini contact problem

Mirjam Walloth
IMA Journal of Numerical Analysis 40 (3) 1937 (2020)
https://doi.org/10.1093/imanum/drz023

A reliable, efficient and localized error estimator for a discontinuous Galerkin method for the Signorini problem

Mirjam Walloth
Applied Numerical Mathematics 135 276 (2019)
https://doi.org/10.1016/j.apnum.2018.09.002

Residual-based a posteriori error estimation for contact problems approximated by Nitsche’s method

Franz Chouly, Mathieu Fabre, Patrick Hild, Jérôme Pousin and Yves Renard
IMA Journal of Numerical Analysis 38 (2) 921 (2018)
https://doi.org/10.1093/imanum/drx024

Geometrically Unfitted Finite Element Methods and Applications

Franz Chouly, Mathieu Fabre, Patrick Hild, et al.
Lecture Notes in Computational Science and Engineering, Geometrically Unfitted Finite Element Methods and Applications 121 93 (2017)
https://doi.org/10.1007/978-3-319-71431-8_4

Gradient schemes for the Signorini and the obstacle problems, and application to hybrid mimetic mixed methods

Yahya Alnashri and Jérôme Droniou
Computers & Mathematics with Applications 72 (11) 2788 (2016)
https://doi.org/10.1016/j.camwa.2016.10.004

A posteriori error estimates of discontinuous Galerkin methods for the Signorini problem

Thirupathi Gudi and Kamana Porwal
Journal of Computational and Applied Mathematics 292 257 (2016)
https://doi.org/10.1016/j.cam.2015.07.008

NCP Function--Based Dual Weighted Residual Error Estimators for Signorini's Problem

A. Rademacher
SIAM Journal on Scientific Computing 38 (3) A1743 (2016)
https://doi.org/10.1137/15M1033873

Numerical Mathematics and Advanced Applications - ENUMATH 2013

Mirjam Walloth and Rolf Krause
Lecture Notes in Computational Science and Engineering, Numerical Mathematics and Advanced Applications - ENUMATH 2013 103 273 (2015)
https://doi.org/10.1007/978-3-319-10705-9_27

An efficient and reliable residual-type a posteriori error estimator for the Signorini problem

Rolf Krause, Andreas Veeser and Mirjam Walloth
Numerische Mathematik 130 (1) 151 (2015)
https://doi.org/10.1007/s00211-014-0655-8

Recent Advances in Contact Mechanics

Patrick Hild and Vanessa Lleras
Lecture Notes in Applied and Computational Mechanics, Recent Advances in Contact Mechanics 56 85 (2013)
https://doi.org/10.1007/978-3-642-33968-4_6

Equilibration techniques for solving contact problems with Coulomb friction

S. Hüeber and B. Wohlmuth
Computer Methods in Applied Mechanics and Engineering 205-208 29 (2012)
https://doi.org/10.1016/j.cma.2010.12.021

Global spatial regularity for elasticity models with cracks, contact and other nonsmooth constraints

Dorothee Knees and Andreas Schröder
Mathematical Methods in the Applied Sciences 35 (15) 1859 (2012)
https://doi.org/10.1002/mma.2598

A sign preserving mixed finite element approximation for contact problems

Patrick Hild
International Journal of Applied Mathematics and Computer Science 21 (3) 487 (2011)
https://doi.org/10.2478/v10006-011-0037-7

A finite element discretization of the contact between two membranes

Faker Ben Belgacem, Christine Bernardi, Adel Blouza and Martin Vohralík
ESAIM: Mathematical Modelling and Numerical Analysis 43 (1) 33 (2009)
https://doi.org/10.1051/m2an/2008041

Residual Error Estimators for Coulomb Friction

Patrick Hild and Vanessa Lleras
SIAM Journal on Numerical Analysis 47 (5) 3550 (2009)
https://doi.org/10.1137/070711554