Free access
Issue
ESAIM: M2AN
Volume 36, Number 6, November/December 2002
Page(s) 1161 - 1176
DOI http://dx.doi.org/10.1051/m2an:2003011
Published online 15 January 2003
  1. F. Alabau, K. Hamdache and Y.J. Peng, Asymptotic analysis of the transient Vlasov-Poisson system for a plane diode. Asymptot. Anal. 16 (1998) 25-48. [MathSciNet]
  2. H.U. Baranger and J.W. Wilkins, Ballistic structure in the electron distribution function of small semiconducting structures: General features and specific trends. Phys. Rev. B 36 (1987) 1487-1502. [CrossRef]
  3. N. Ben Abdallah, The Child-Langmuir regime for electron transport in a plasma including a background of positive ions. Math. Models Methods Appl. Sci. 4 (1994) 409-438. [CrossRef] [MathSciNet]
  4. N. Ben Abdallah, Convergence of the Child-Langmuir asymptotics of the Boltzmann equation of semiconductors. SIAM J. Math. Anal. 27 (1996) 92-109. [CrossRef] [MathSciNet]
  5. N. Ben Abdallah, Étude de modèles asymptotiques de transport de particules chargées: Asymptotique de Child-Langmuir. Ph.D. thesis.
  6. N. Ben Abdallah and P. Degond, The Child-Langmuir law for the Boltzmann equation of semiconductors. SIAM J. Math. Anal. 26 (1995) 364-398. [CrossRef] [MathSciNet]
  7. N. Ben Abdallah and P. Degond, The Child-Langmuir law in the kinetic theory of charged particles: semiconductors models. Mathematical problems in semiconductor physics, Rome (1993) 76-102. Longman, Harlow, Pitman Res. Notes Math. Ser. 340 (1995).
  8. N. Ben Abdallah, P. Degond and F. Méhats, The Child-Langmuir asymptotics for magnetized flows. Asymptot. Anal. 20 (1999) 97-13. [MathSciNet]
  9. N. Ben Abdallah, P. Degond and C. Schmeiser, On a mathemaical model of hot-carrier injection in semiconductors. Math. Methods Appl. Sci. 17 (1994) 1193-1212. [CrossRef] [MathSciNet]
  10. J.A. Carrillo, I.M. Gamba, O. Muscato and C.-W. Shu, Comparison of Monte Carlo and deterministic simulations of a silicon diode. IMA series (to be published).
  11. J.A. Carrillo, I.M. Gamba and C.-W. Shu, Computational macroscopic approximations to the 1-D relaxation-time kinetic system for semiconductors. Phys. D 146 (2000) 289-306. [CrossRef] [MathSciNet]
  12. P. Degond and P.A. Raviart, An asymptotic analysis of the one-dimensional Vlasov-Poisson system: the Child-Langmuir law. Asymptot. Anal. 4 (1991) 187-214.
  13. P. Degond and P.A. Raviart, On a penalization of the Child-Langmuir emission condition for the one-dimensional Vlasov-Poisson equation. Asymptot. Anal. 6 (1992) 1-27.
  14. G. Jiang and C.-W. Shu, Efficient implementation of weighted ENO schemes. J. Comput. Phys. 126 (1996) 202-228. [NASA ADS] [CrossRef] [MathSciNet]
  15. I. Langmuir and K.T. Compton, Electrical discharges in gases: Part II, fundamental phenomena in electrical discharges. Rev. Modern Phys. 3 (1931) 191-257. [CrossRef]
  16. P.A. Markowich, C.A. Ringhofer and C. Schmeiser, Semiconductor Equations. Springer, New York (1990).
  17. C.-W. Shu, Essentially non-oscillatory and weighted essentially non-oscillatory schemes for hyperbolic conservation laws, Advanced Numerical Approximation of Nonlinear Hyperbolic Equations, B. Cockburn, C. Johnson, C.-W. Shu and E. Tadmor (A. Quarteroni Ed.). Springer, Lecture Notes in Math. 1697 (1998) 325-432.
  18. M.S. Shur and L.F. Eastman, Ballistic transport in semiconductors at low temperature for low-power high-speed logic. IEEE Trans. Electron Dev. ED-26 (1979) 1677-1683.
  19. M.S. Shur and L.F. Eastman, Near ballistic transport in GaAs devices at 77 K. Solid-State Electron 24 (1991) 11-18. [CrossRef]

Recommended for you