Free access
Volume 38, Number 1, January-February 2004
Page(s) 93 - 127
Published online 15 February 2004
  1. H. Amann, Linear and Quasilinear Parabolic Problems 1: Abstract Linear Theory. Birkhäuser, Basel (1995).
  2. H.-J. Bungartz and M. Griebel, A note on the complexity of solving Poisson's equation for spaces of bounded mixed derivatives. J. Complexity 15 (1999) 167–199. [CrossRef] [MathSciNet]
  3. S.C. Eisenstat, H.C. Elman and M.H. Schultz, Variational iterative methods for nonsymmetric systems of linear equations. SIAM J. Numer. Anal. 20 (1983) 345–357. [CrossRef] [MathSciNet]
  4. M. Griebel and S. Knapek, Optimized tensor product approximation spaces. Constr. Approx. 16 (2000) 525–540. [CrossRef] [MathSciNet]
  5. M. Griebel, P. Oswald and T. Schiekofer, Sparse grids for boundary integral equations. Numer. Math. 83 (1999) 279–312. [CrossRef] [MathSciNet]
  6. J.L. Lions and E. Magenes, Non-homogeneous boundary value problems and applications I. Springer-Verlag (1972).
  7. P. Oswald, On best N-term approximation by Haar functions in Hs-norms, in Metric Function Theory and Related Topics in Analysis. S.M. Nikolskij, B.S. Kashin, A.D. Izaak Eds., AFC, Moscow (1999) 137–163 (in Russian).
  8. H.C. Öttinger, Stochastic Processes in polymeric fluids. Springer-Verlag (1998).
  9. A. Pazy, Semigroups of Linear Operators and Applications to Partial Differential Equations. Appl. Math. Sci., Springer-Verlag, New York 44 (1983).
  10. G. Schmidlin, C. Lage and C. Schwab, Rapid solution of first kind boundary integral equations in Formula . Eng. Anal. Bound. Elem. 27 (2003) 469–490. [CrossRef]
  11. D. Schötzau, hp-DGFEM for Parabolic Evolution Problems. Dissertation ETH Zurich (1999).
  12. D. Schötzau and C. Schwab, Time discretization of parabolic problems by the hp-version of the discontinuous Galerkin finite element method. SIAM J. Numer. Analysis 38 (2000) 837–875. [CrossRef] [MathSciNet]
  13. D. Schötzau and C. Schwab, hp-Discontinuous Galerkin time-stepping for parabolic problems. C.R. Acad. Sci. Paris 333 (2001) 1121–1126.
  14. C. Schwab, p and hp Finite Element Methods. Oxford University Press (1998).
  15. C. Schwab and R.A. Todor, Sparse finite elements for stochastic elliptic problems-higher order moments (in press in Computing 2003),
  16. V. Thomee, Galerkin Finite Element Methods for Parabolic Problems. Springer-Verlag (1997).
  17. T. von Petersdorff and C. Schwab, Wavelet-discretizations of parabolic integro-differential equations. SIAM J. Numer. Anal. 41 (2003) 159–180. [CrossRef] [MathSciNet]
  18. T. Werder, D. Schötzau, K. Gerdes and C. Schwab, hp-Discontinuous Galerkin time-stepping for parabolic problems. Comput. Methods Appl. Mech. Eng. 190 (2001) 6685–6708. [CrossRef]

Recommended for you