Free access
Issue
ESAIM: M2AN
Volume 38, Number 5, September-October 2004
Page(s) 757 - 764
DOI http://dx.doi.org/10.1051/m2an:2004037
Published online 15 October 2004
  1. G.A. Baker, V.A. Dougalis and O.A. Karakashian, On a higher order accurate fully discrete Galerkin approximation to the Navier-Stokes equations. Math. Comp. 39 (1982) 339–375. [CrossRef] [MathSciNet]
  2. E. Emmrich, Analysis von Zeitdiskretisierungen des inkompressiblen Navier-Stokes-Problems. Cuvillier, Göttingen (2001).
  3. E. Emmrich, Error of the two-step BDF for the incompressible Navier-Stokes problem. Preprint 741, TU Berlin (2002).
  4. V. Girault and P.-A. Raviart, Finite Element Approximation of the Navier-Stokes Equations. Springer, Berlin (1979).
  5. J.G. Heywood and R. Rannacher, Finite element approximation of the nonstationary Navier-Stokes problem, Part IV: Error analysis for second-order time discretization. SIAM J. Numer. Anal. 27 (1990) 353–384. [CrossRef] [MathSciNet]
  6. A.T. Hill and E. Süli, Approximation of the global attractor for the incompressible Navier-Stokes equations. IMA J. Numer. Anal. 20 (2000) 633–667. [CrossRef] [MathSciNet]
  7. S. Müller-Urbaniak, Eine Analyse des Zwischenschritt-θ-Verfahrens zur Lösung der instationären Navier-Stokes-Gleichungen. Preprint 94-01 (SFB 359), Univ. Heidelberg (1994).
  8. A. Prohl, Projection and Quasi-compressibility Methods for Solving the Incompressible Navier-Stokes Equations. Teubner, Stuttgart (1997).
  9. R. Temam, Navier-Stokes Equations. Theory and Numerical Analysis. North-Holland Publ. Company, Amsterdam (1977).
  10. R. Temam, Navier-Stokes Equations and Nonlinear Functional Analysis. CBMS-NSF Reg. Confer. Ser. Appl. Math. SIAM 41 (1985).

Recommended for you