Free access
Issue
ESAIM: M2AN
Volume 40, Number 2, March-April 2006
Page(s) 393 - 412
DOI http://dx.doi.org/10.1051/m2an:2006018
Published online 21 June 2006
  1. M. Bardi and I. Capuzzo-Dolcetta, Optimal control and viscosity solutions of Hamilton-Jacobi-Bellman equations. Birkhauser, Boston (1997).
  2. G. Barles, An approach of deterministic control problems with unbounded data. Ann. I. H. Poincaré 7 (1990) 235–258.
  3. G. Barles, Solutions de Viscosité des Equations de Hamilton–Jacobi. Springer–Verlag, Paris (1994).
  4. G. Barles and B. Perthame, Comparison principle for Dirichlet-type Hamilton-Jacobi equations and singular perturbations of degenerated elliptic equations. Appl. Math. Opt. 21 (1990) 21–44. [CrossRef] [MathSciNet]
  5. I. Barnes and K. Zhang, Instability of the eikonal equation and shape-from-shading. ESAIM: M2AN 34 (2000) 127–138. [CrossRef] [EDP Sciences]
  6. F. Camilli and A. Siconolfi, Maximal subsolutions for a class of degenerate Hamilton-Jacobi problems. Indiana U. Math. J. 48 (1999) 1111–1132.
  7. F. Camilli and A. Siconolfi, Nonconvex degenerate Hamilton-Jacobi equations. Math. Z. 242 (2002) 1–21. [CrossRef] [MathSciNet]
  8. I. Capuzzo-Dolcetta and P.-L. Lions, Hamilton-Jacobi equations with state constraints. Trans. Amer. Math. Soc. 318 (1990) 643–68. [CrossRef] [MathSciNet]
  9. F.H. Clarke, Optimization and Nonsmooth Analysis. SIAM, Classics in Applied Mathematics 5, Philadelphia (1990).
  10. M.G. Crandall and P.-L. Lions, Viscosity solutions of Hamilton-Jacobi equations. Trans. Amer. Math. Soc. 277 (1983) 1–42. [CrossRef] [MathSciNet]
  11. P. Dupuis and J. Oliensis, An optimal control formulation and related numerical methods for a problem in shape reconstruction. Ann. Appl. Probab. 4 (1994) 287–346. [CrossRef] [MathSciNet]
  12. M. Falcone and M. Sagona, An algorithm for the global solution of the Shape-From-Shading model, in Proceedings of the International Conference on Image Analysis and Processing. Lect. Notes Math. 1310 (1997) 596–603.
  13. B.K. Horn and M.J. Brooks, Eds., Shape From Shading. The MIT Press (1989).
  14. H. Ishii, A boundary value problem of the Dirichlet type for Hamilton-Jacobi equations. Ann. Scuola Norm. Sup. Pisa Cl. Sci. 16 (1989) 105–135. [MathSciNet]
  15. H. Ishii and M. Ramaswamy, Uniqueness results for a class of Hamilton-Jacobi equations with singular coefficients. Commun. Part. Diff. Eq. 20 (1995) 2187–2213. [CrossRef]
  16. R. Kimmel, K. Siddiqi, B.B. Kimia and A. Bruckstein, Shape from shading: Level set propagation and viscosity solutions. Int. J. Comput. Vision 16 (1995) 107–133. [CrossRef]
  17. P.-L. Lions, Generalized Solutions of Hamilton–Jacobi Equations. Res. Notes Math. 69. Pitman Advanced Publishing Program, London (1982).
  18. P.-L. Lions, E. Rouy and A. Tourin, Shape-from-shading, viscosity solutions and edges. Numer. Math. 64 (1993) 323–353. [CrossRef] [MathSciNet]
  19. M. Malisoff, Bounded-from-below solutions of the Hamilton-Jacobi equation for optimal control problems with exit times: vanishing Lagrangians, eikonal equations, and shape-from-shading. NoDEA: Nonlinear Differ. Equ. Appl. 11 (2004) 95–122. [CrossRef]
  20. J. Oliensis and P. Dupuis, Direct method for reconstructing shape from shading, in Proceedings of SPIE Conf. 1570 on Geometric Methods in Computer Vision (1991) 116–128.
  21. E. Prados and O. Faugeras, Perspective shape-from-shading, and viscosity solutions, in Proceedings of the 9th International Conference on Computer Vision (Nice 2003). IEEE Comput. Soc. Press 2 (2003) 826–831.
  22. E. Prados and O. Faugeras, A generic and provably convergent shape-from-shading method for orthographic and pinhole cameras. Int. J. Comput. Vision 65 (2005) 97–125. [CrossRef]
  23. E. Prados, O. Faugeras and E. Rouy, Shape from shading and viscosity solutions, in Proceedings of the 7th European Conference on Computer Vision (Copenhagen 2002), Springer-Verlag 2351 (2002) 790–804.
  24. E. Prados, F. Camilli and O. Faugeras, A unifying and rigorous shape from shading method adapted to realistic data and applications. J. Math. Imaging Vis. (2006) (to appear).
  25. E. Rouy and A. Tourin, A viscosity solutions approach to shape-from-shading. SIAM J. Numer. Anal. 29 (1992) 867–884. [CrossRef] [MathSciNet]
  26. H.M. Soner, Optimal control with state space constraints. SIAM J. Control Optim 24 (1986): Part I: 552–562, Part II: 1110–1122.
  27. H.J. Sussmann, Uniqueness results for the value function via direct trajectory-construction methods, in Proceedings of the 42nd IEEE Conference on Decision and Control 4 (2003) 3293–3298.
  28. A. Tankus, N. Sochen and Y. Yeshurun, A new perspective [on] Shape-From-Shading, in Proceedings of the 9th International Conference on Computer Vision (Nice 2003). IEEE Comput. Soc. Press 2 (2003) 862–869.
  29. D. Tschumperlé, PDE's Based Regularization of Multivalued Images and Applications. Ph.D. Thesis, University of Nice-Sophia Antipolis (2002).
  30. R. Zhang, P.-S. Tsai, J.-E. Cryer and M. Shah, Shape from shading: A survey. IEEE T. Pattern Anal. 21 (1999) 690–706. [CrossRef]

Recommended for you