Free access
Volume 40, Number 3, May-June 2006
Page(s) 431 - 468
Published online 22 July 2006
  1. A.A. Amsden, P.J. O'Rourke and T.D. Butler, Kiva II, a computer program for chemically reactive flows with sprays. Technical Report LA-11560-MS. Los Alamos National Laboratory, Los Alamos, New Mexico (1989).
  2. G. Chanteperdrix, P. Villedieu and J.P. Vila, A compressible model for separated two-phase flows computations, in ASME Fluids Engineering Division Summer Meeting, number 31141, Montreal (2002).
  3. K. Domelevo, The kinetic sectional approach for noncolliding evaporating sprays. Atomization Spray. 11 (2001) 291–303.
  4. K. Domelevo and L. Sainsaulieu, A numerical method for the computation of the dispersion of a cloud of particles by a turbulent gas flow field. J. Comput. Phys. 133 (1997) 256–278. [CrossRef] [MathSciNet]
  5. D.A. Drew and S.L. Passman, Theory of multicomponent fluids. Applied Mathematical Sciences, Springer 135 (1999).
  6. G. Dufour and P. Villedieu, A second-order multi-fluid model for evaporating sprays. ESAIM: M2AN 39 (2005) 931–963. [CrossRef] [EDP Sciences]
  7. J.K. Dukowicz, A particle-fluid numerical model for liquid sprays. J. Comput. Phys. 35 (1980) 229–253. [CrossRef] [MathSciNet]
  8. J.B. Greenberg, D. Albagli and Y. Tambour, An opposed jet quasi-monodisperse spray diffusion flame. Combust. Sci. Technol. 50 (1986) 255–270. [CrossRef]
  9. J.B. Greenberg, I. Silverman and Y. Tambour, On the origin of spray sectional conservation equations. Combust. Flame 93 (1993) 90–96. [CrossRef]
  10. H. Guillard and A. Murrone, A five equation reduced model for compressible two phase flow problems. Prepublication 4778, INRIA (2003).
  11. A. Harten, J.M. Hyman and P.D. Lax, On finite-difference approximations and entropy conditions for shocks. Comm. Pure Appl. Math. 29 (1976) 297–322. With an appendix by B. Keyfitz. [CrossRef] [MathSciNet]
  12. J. Hylkema, Modélisation cinétique et simulation numérique d'un brouillard dense de gouttelettes. Application aux propulseurs à poudre. Ph.D. thesis, ENSAE (1999).
  13. F. Laurent, Analyse numérique d'une méthode multi-fluide Eulérienne pour la description de sprays qui s'évaporent. C. R. Math. Acad. Sci. Paris 334 (2002) 417–422. [CrossRef] [MathSciNet]
  14. F. Laurent, Modélisation mathématique et numérique de la combustion de brouillards de gouttes polydispersés. Ph.D. thesis, Université Claude Bernard, Lyon 1 (2002).
  15. F. Laurent and M. Massot, Multi-fluid modeling of laminar poly-dispersed spray flames: origin, assumptions and comparison of the sectional and sampling methods. Combust. Theor. Model. 5 (2001) 537–572. [CrossRef]
  16. F. Laurent, M. Massot and P. Villedieu, Eulerian multi-fluid modeling for the numerical simulation of polydisperse dense liquid spray. J. Comput. Phys. 194 (2004) 505–543. [CrossRef] [MathSciNet]
  17. F. Laurent, V. Santoro, M. Noskov, A. Gomez, M.D. Smooke and M. Massot, Accurate treatment of size distribution effects in polydispersed spray diffusion flames: multi-fluid modeling, computations and experiments. Combust. Theor. Model. 8 (2004) 385–412. [CrossRef]
  18. R.J. LeVeque, Numerical methods for conservation laws. Birkhäuser Verlag, Basel, second edition (1992).
  19. D.L. Marchisio, R.D. Vigil and R.O. Fox, Quadrature method of moments for aggregation-breakage processes. J. Colloid Interf. Sci. 258 (2003) 322–334. [CrossRef]
  20. M. Massot and P. Villedieu, Modélisation multi-fluide eulérienne pour la simulation de brouillards denses polydispersés. C. R. Acad. Sci. Paris Sér. I Math. 332 (2001) 869–874.
  21. M. Massot, M. Kumar, A. Gomez and M.D. Smooke, Counterflow spray diffusion flames of heptane: computations and experiments, in Proceedings of the 27th Symp. (International) on Combustion, The Comb. Institute (1998) 1975–1983.
  22. P.J. O'Rourke, Collective drop effects on vaporizing liquid sprays. Ph.D. thesis, University of Princeton (1981).
  23. D. Ramkrishna and A.G. Fredrickson, Population Balances: Theory and Applications to Particulate Systems in Engineering. Academic Press (2000).
  24. P.-A. Raviart and L. Sainsaulieu, A nonconservative hyperbolic system modeling spray dynamics. I. Solution of the Riemann problem. Math. Mod. Meth. Appl. S. 5 (1995) 297–333. [CrossRef] [MathSciNet]
  25. M. Rüger, S. Hohmann, M. Sommerfeld and G. Kohnen, Euler/Lagrange calculations of turbulent sprays : the effect of droplet collisions and coalescence. Atomization Spray. 10 (2000) 47–81.
  26. B. van Leer, Towards the ultimate conservative difference scheme v. a second order sequel to godunov's method. J. Comput. Phys. 32 (1979) 101–136. [NASA ADS] [CrossRef]
  27. P. Villedieu and J. Hylkema, Une méthode particulaire aléatoire reposant sur une équation cinétique pour la simulation numérique des sprays denses de gouttelettes liquides. C. R. Acad. Sci. Paris Sér. I Math. 325 (1997) 323–328.
  28. F.A. Williams, Spray combustion and atomization. Phys. Fluids 1 (1958) 541–545. [CrossRef]
  29. F.A. Williams, Combustion Theory (Combustion Science and Engineering Series). F.A. Williams Ed., Reading, MA: Addison-Wesley (1985).
  30. D.L. Wright, R. McGraw and D.E. Rosner, Bivariate extension of the quadrature method of moments for modeling simultaneous coagulation and sintering of particle populations. J. Colloid Interf. Sci. 236 (2001) 242–251. [CrossRef]

Recommended for you