Free access
Issue
ESAIM: M2AN
Volume 45, Number 1, January-February 2011
Page(s) 1 - 22
DOI http://dx.doi.org/10.1051/m2an/2010037
Published online 24 June 2010
  1. K. Barrailh and D. Lannes, A general framework for diffractive optics and its applications to lasers with large spectrums and short pulses. SIAM J. Math. Anal. 34 (2002) 636–674. [CrossRef] [MathSciNet]
  2. R. Belaouar, T. Colin, G. Gallice and C. Galusinski, Theoretical and numerical study of a quasi-linear Zakharov system describing Landau damping. ESAIM: M2AN 40 (2006) 961–990. [CrossRef] [EDP Sciences]
  3. R.L. Berger, C.H. Still, A. Williams and A.B. Langdon, On the dominant and subdominant behaviour of stimulated Raman and Brillouin scattering driven by nonuniform laser beams. Phys. Plasma 5 (1998) 4337–4356. [CrossRef]
  4. C. Besse, Schéma de relaxation pour l'équation de Schrödinger non linéaire et les systèmes de Davey et Stewartson. C. R. Acad. Sci. Paris. Sér. I Math. 326 (1998) 1427–1432.
  5. R. Carles, Geometrics optics and instability for semi-linear Schrödinger equations. Arch. Ration. Mech. Anal. 183 (2007) 525–553. [CrossRef] [MathSciNet]
  6. M. Colin and T. Colin, On a quasi-linear Zakharov system describing laser-plasma interactions. Diff. Int. Eqs. 17 (2004) 297–330.
  7. M. Colin and T. Colin, A numerical model for the Raman amplification for laser-plasma interactions. J. Comput. Appl. Math. 193 (2006) 535–562. [CrossRef] [MathSciNet]
  8. C.D. Decker, W.B. Mori, T. Katsouleas and D.E. Hinkel, Spatial temporal theory of Raman forward scattering. Phys. Plasma 3 (1996) 1360–1372. [CrossRef]
  9. M. Doumica, F. Duboc, F. Golse and R. Sentis, Simulation of laser beam propagation with a paraxial model in a tilted frame. J. Comput. Phys. 228 (2009) 861–880. [CrossRef] [MathSciNet]
  10. R.T. Glassey, Convergence of an energy-preserving scheme for the Zakharov equation in one space dimension. Math. Comput. 58 (1992) 83–102. [CrossRef] [MathSciNet]
  11. N. Hayashi, P.I. Naumkin and P.-N. Pipolo, Smoothing effects for some derivative nonlinear Schrödinger equations. Discrete Contin. Dyn. Syst. 5 (1999) 685–695. [CrossRef]
  12. W.L. Kruer, The physics of laser plama interactions. Addison-Wesley, New York (1988)
  13. R. Sentis, Mathematical models for laser-plasma interaction. ESAIM: M2AN 39 (2005) 275–318. [CrossRef] [EDP Sciences]
  14. B. Texier, Derivation of the Zakharov equations. Arch. Ration. Mech. Anal. 184 (2007) 121–183. [CrossRef] [MathSciNet]
  15. V.E. Zakharov, S.L. Musher and A.M. Rubenchik, Hamiltonian approach to the description of nonlinear plasma phenomena. Phys. Reports 129 (1985) 285–366. [CrossRef]

Recommended for you