Free access
Volume 46, Number 1, January-February 2012
Page(s) 39 - 57
Published online 22 July 2011
  1. O. Axelsson and V.A. Barker, Finite element solution of boundary value problems, theory and computation. SIAM, Philidelphia, PA (2001).
  2. F. Brezzi and M. Fortin, Mixed and hybrid finite element methods. Springer-Verlag, New York, NY (1991).
  3. A.V. Cherkaev and L.V. Gibiansky, Variational principles for complex conductivity, viscoelasticity, and similar problems in media with complex moduli. J. Math. Phys. 35 (1994) 127–145. [CrossRef] [MathSciNet]
  4. J. Demmel, The condition number of equivalence transformations that block diagonalize matrix pencils. SIAM J. Num. Anal. 20 (1983) 599–610. [CrossRef]
  5. L.C. Evans, Partial differential equations. American Mathematical Society, Providence, RI (1998).
  6. I. Harari, M. Slavutin and E. Turkel, Analytical and numerical studies of a finite element PML for the Helmholtz equation. J. Comp. Acoust. 8 (2000) 121–137.
  7. G.W. Milton and J.R. Willis, On modifications of newton's second law and linear continuum elastodynamics. Proc. R. Soc. A 463 (2007) 855–880. [CrossRef]
  8. G.W. Milton and J.R. Willis, Minimum variational principles for time-harmonic waves in a dissipative medium and associated variational principles of Hashin-Shtrikman type. Proc. R. Soc. Lond. 466 (2010) 3013–3032. [CrossRef] [MathSciNet]
  9. G.W. Milton, P. Seppecher and G. Bouchitté, Minimization variational principles for acoustics, elastodynamics, and electromagnetism in lossy inhomogeneous bodies at fixed frequency. Proc. R. Soc. A 465 (2009) 367–396. [CrossRef]
  10. V.V. Tyutekin and Y.V. Tyutekin, Sound absorbing media with two types of acoustic losses. Acoust. Phys. 56 (2010) 33–36. [CrossRef]

Recommended for you